- #1
gyver
- 1
- 0
Hi folks!
I'm trying to (numerically) find a steady-state solution for [tex]N_b[/tex] and [tex]N_w[/tex] in the following set of coupled DEs using the software package Matlab:
[tex]
\left{
\begin{array}{l}
\frac{\delta N_b}{\delta t} = P_b(N_b) - N_b \cdot \left( \frac{1}{\tau_b} - \frac{1}{\tau_c}D \right)\\
\frac{\delta N_w}{\delta t} = \frac{N_b}{\tau_c} - \frac{N_w}{\tau_w(N_w)} - P_w(N_w)
\end{array}
\right.
[/tex]
where [tex]\tau_b[/tex], [tex]\tau_c[/tex] and [tex]D[/tex] are constants. Which way would be the right one to go?
I'm trying to (numerically) find a steady-state solution for [tex]N_b[/tex] and [tex]N_w[/tex] in the following set of coupled DEs using the software package Matlab:
[tex]
\left{
\begin{array}{l}
\frac{\delta N_b}{\delta t} = P_b(N_b) - N_b \cdot \left( \frac{1}{\tau_b} - \frac{1}{\tau_c}D \right)\\
\frac{\delta N_w}{\delta t} = \frac{N_b}{\tau_c} - \frac{N_w}{\tau_w(N_w)} - P_w(N_w)
\end{array}
\right.
[/tex]
where [tex]\tau_b[/tex], [tex]\tau_c[/tex] and [tex]D[/tex] are constants. Which way would be the right one to go?
Last edited: