- #1
Mr rabbit
- 26
- 3
Quantum field theory is a powerful tool to calculate observables given the amplitude of some process.
I only know the application to high energy physics: you have a Lagrangian with an interaction term between some fields, and you can calculate the amplitude of some process. Once you have this amplitude, you can usually calculate two observables: cross sections (scattering processes) and decay widths (decay processes).
How does this work in condensed matter physics? You have a Hamiltonian, you can calculate amplitudes using the perturbation theory ... and then? What kind of observables can you calculate and how do they relate to the amplitude?
I only know the application to high energy physics: you have a Lagrangian with an interaction term between some fields, and you can calculate the amplitude of some process. Once you have this amplitude, you can usually calculate two observables: cross sections (scattering processes) and decay widths (decay processes).
How does this work in condensed matter physics? You have a Hamiltonian, you can calculate amplitudes using the perturbation theory ... and then? What kind of observables can you calculate and how do they relate to the amplitude?