- #1
ergospherical
- 1,072
- 1,365
If a galaxy is receding from us, then the 1+redshift observed on Earth is the product ##(1+z_{pec})(1+z_{cosm})## of the doppler redshift due to the peculiar motion of the galaxy and the cosmological redshift due to the FRW metric. It makes sense if we think about some intermediate observers (e.g. someone stationary w.r.t. hubble flow but at the same position instantaneously as the emitting galaxy, who measures the doppler part only). Could someone show me how to derive the result from the general definitions? i.e. the galaxy has some 4-velocity ##u_{gal} = (u_{gal}^t, u_{gal}^r, 0,0)##, and an observer attached to the galaxy measures\begin{align*}
\omega_{em} = u_{gal} \cdot p = u_{gal}^t p^t - \frac{a^2}{1-Kr^2} u_{gal}^r p^r
\end{align*}where ##p## is the photon 4-momn. And the earth observer measures ##\omega_{obs} = u_{earth}^t p^t##. The constraints are that both 4-velocities are normalised to ##u \cdot u = 1##, and ##p^t = E## is conserved along the photon's path. That isn't enough constraits to derive the result, I think?
\omega_{em} = u_{gal} \cdot p = u_{gal}^t p^t - \frac{a^2}{1-Kr^2} u_{gal}^r p^r
\end{align*}where ##p## is the photon 4-momn. And the earth observer measures ##\omega_{obs} = u_{earth}^t p^t##. The constraints are that both 4-velocities are normalised to ##u \cdot u = 1##, and ##p^t = E## is conserved along the photon's path. That isn't enough constraits to derive the result, I think?
Last edited: