- #1
jk22
- 731
- 24
Does not the movement at c simplifies out depending on how it is approached like :
$$x'=\frac{x-vt}{\sqrt{1-v^2/c^2}}$$
If x=ct, then this gives :
$$x'=c\sqrt{\frac{1-v/c}{1+v/c}}t$$
Then the limit ##v\rightarrow c## exists and implies ##x'=0##.
Does this contradict the non existence of observer moving at speed c ?
$$x'=\frac{x-vt}{\sqrt{1-v^2/c^2}}$$
If x=ct, then this gives :
$$x'=c\sqrt{\frac{1-v/c}{1+v/c}}t$$
Then the limit ##v\rightarrow c## exists and implies ##x'=0##.
Does this contradict the non existence of observer moving at speed c ?