- #1
TimeRip496
- 254
- 5
The normalized angular wave functions are called spherical harmonics: $$Y^m_l(\theta,\phi)=\epsilon\sqrt{\frac{(2l+1)}{4\pi}\frac{(l-|m|)!}{(l+|m|)!}}e^{im\phi}*P^m_l(cos\theta)$$
How do I obtain this from this(http://www.physics.udel.edu/~msafrono/424-2011/Lecture 17.pdf) (Page 8)?
The normalisation condition for Y is $$\int^{2\pi}_0\int^{\pi}_0|Y|^2\sin\theta d\theta d\phi=1$$ Note that 0<∅<2π and 0<θ<π.
$$Y=\Theta(\theta)*\Phi(\phi)$$.
$$\Theta(\theta)=A*P^m_l(cos\theta)$$ where A is the coefficient, x=cosθ, P is the associated Legendre Polynomial.
$$\Phi(\phi)=e^{im\phi}$$
$$Y^m_l(\theta,\phi)=A*e^{im\phi}P^m_l(cos\theta)$$
where $$A=\epsilon\sqrt{\frac{(2l+1)}{4\pi}\frac{(l-|m|)!}{(l+|m|)!}}$$.
I know how to obtain Φ but not A from Θ(θ), which is why I don't know how to obtain the spherical harmonics equation above.
How do I obtain this from this(http://www.physics.udel.edu/~msafrono/424-2011/Lecture 17.pdf) (Page 8)?
The normalisation condition for Y is $$\int^{2\pi}_0\int^{\pi}_0|Y|^2\sin\theta d\theta d\phi=1$$ Note that 0<∅<2π and 0<θ<π.
$$Y=\Theta(\theta)*\Phi(\phi)$$.
$$\Theta(\theta)=A*P^m_l(cos\theta)$$ where A is the coefficient, x=cosθ, P is the associated Legendre Polynomial.
$$\Phi(\phi)=e^{im\phi}$$
$$Y^m_l(\theta,\phi)=A*e^{im\phi}P^m_l(cos\theta)$$
where $$A=\epsilon\sqrt{\frac{(2l+1)}{4\pi}\frac{(l-|m|)!}{(l+|m|)!}}$$.
I know how to obtain Φ but not A from Θ(θ), which is why I don't know how to obtain the spherical harmonics equation above.