- #1
poissonspot
- 40
- 0
Someone I talked to this week wanted to define a function from reals to reals that captured the sense that each negative number has an "nth root" if n is odd. We talked about how the standard definition only applies to positive reals, but considered this case if we defined, for instance, f(x)=(-2)^x=-2^x when x is the sum of rationals with odd denominators. If we just deleted/ignored the remaining real x's, and considered the resulting space would f(x) be continuous?
Any feedback appreciated,
Any feedback appreciated,