- #1
Jason4
- 28
- 0
I have:
$\dot{x}=4x+y-x(x^2+y^2)$
$\dot{y}=4y-x-y(x^2+y^2)$
And I need to find $\dot{r}$ and $\dot{\theta}$
I got as far as:
$\dot{x}=r(\text{sin}(\theta)-\text{cos}(\theta)(r^2-4))$
$\dot{y}=r(-\text{sin}(\theta)(r^2-4)-\text{cos}(\theta))$
How do I go from here to $\dot{r}$ and $\dot{\theta}$ ?
$\dot{x}=4x+y-x(x^2+y^2)$
$\dot{y}=4y-x-y(x^2+y^2)$
And I need to find $\dot{r}$ and $\dot{\theta}$
I got as far as:
$\dot{x}=r(\text{sin}(\theta)-\text{cos}(\theta)(r^2-4))$
$\dot{y}=r(-\text{sin}(\theta)(r^2-4)-\text{cos}(\theta))$
How do I go from here to $\dot{r}$ and $\dot{\theta}$ ?