- #1
bosox09
- 7
- 0
Homework Statement
The solution to the ODE y''(t) + 4y(t) = 1 + u(t − 2), y(0) = 0, y'(0) = 0 is given by...
The Attempt at a Solution
OK well I figured this one is good to solve with Laplace transforms. So I took the Laplace of both sides to obtain (s2 + 4)Y(s) = [e-2s/s] + 1/s, which equals (e-2s + 1)/s. Isolating Y(s) gave me (e-2s + 1)/s(s2 + 4). I used partial fraction expansion to obtain (1/4) - (1/4)cos2t, but this is apparently only half of the whole answer, given as (1/4)(1 − cos 2t) + (1/4)(1 − cos 2(t − 2))u(t − 2). What am I missing?