A Off-Forward quark-quark amplitude in momentum space

Diracobama2181
Messages
70
Reaction score
3
TL;DR Summary
I am attempting to find the off-forward quark-quark amplitude in momentum space.
I am having difficulty writing out

##\bra{p',\lambda}\psi^{\dagger}(-\frac{z^-}{2})\gamma^0\gamma^+\psi\frac{z^-}{2})\ket{p,\lambda}## in momentum space.
Here, I am working in light-cone coordinates, where I am defining ##z^-=z^0-z^3##, ##r'=r=(0,z^{-},z^1,z^2)##.
My attempt at this would be
$$\bra{p',\lambda}\psi^{\dagger}(-\frac{z^{-}}{2})\gamma^0\gamma^{+}\psi\frac{z^{-}}{2})\ket{p,\lambda}=\Sigma_{r,r'}\bra{p',\lambda}(\ket{r'}\bra{r'})\psi^{\dagger}(-\frac{z^{-}}{2})\gamma^0\gamma^{+}\psi\frac{z^{-}}{2}(\ket{r}\bra{r})\ket{p,\lambda}\\\\
=\int d^3r exp[i(p'-p)\cdot z^{-}]\psi^{\dagger}(-\frac{z^-}{2})\gamma^0\gamma^+\psi(\frac{z^-}{2})$$.
From here, I can substitute in
##\psi(t,\vec{r})=\int\frac{d^3\vec{k}}{(2\pi)^3}exp[-i(k^0t-\vec{k}\cdot \vec{r})]\phi(\vec{k})##

Is this attempt correct so far, or am I overlooking something? Any comments are appreciated.
 
Physics news on Phys.org
Your attempt looks correct so far. The next step would be to substitute in the definition of ##\psi## and evaluate the integral. This should give you a result in momentum space.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top