- #1
sarrah1
- 66
- 0
Hi Evgeny
Thank you very much for your reply.
I will try to be more clear this time and in detail. The reason why it was not as clear, as it's lengthy. I have the following
$|{y}_{n}(x)|\le\int_{a}^{b} \,|k(x,s)| |{y}_{n-1}(s)| ds+\int_{a}^{x} \,|g(x,s)| |{y}_{n-1}(s)| ds$ , $x\in[a,b]$ $a,b$ real ... (1)
By defining operator $K$
$Ky=\int_{a}^{b} \,k(x,s) y(s) ds$
I define norms
$||K||={max}_{a<x<b}\int_{a}^{b} \,|k(x,s)|ds $ , $M={max}_{a<x<b}|g(x,s)|$ , $||y||={max}_{a<x<b}|y(x|$
From (1) $|{y}_{1}|\le||{y}_{0} ||K||+||{y}_{0}||M(x-a)$
Another iteration gives
$|{y}_{2}|\le||{y}_{0}|| {||K||}^{2}+||{y}_{0}|| ||K||M(x-a)+||{y}_{0}|| M||K|| (b-a)+||{y}_{0}||{M}^{2}\frac{{(x-a)}^{2}}{2!}$
In general for any $n$
$|{y}_{n}(x)|\le\left\{||K||\left(\sum_{j=0}^{n-1}{(||K||+M(b-a))}^{n-j-1}{M}^{j}\frac{{(x-a)}^{j}}{j!}\right)+{M}^{n}\frac{{(x-a)}^{n}}{n!}\right\}||{y}_{0}||$ ... (2)
MY PROBLEM STARTS HERE:
Instead of writing the above inequality for $n=3,4,$ etc.. I want to apply mathematical induction to prove (2). Assuming (2) is valid for $n$ I obtain using one further iteration
$|{y}_{n+1}(x)|\le\left\{||K||\left(\sum_{j=0}^{n-1}{(||K||+M(b-a))}^{n-j-1}{M}^{j}\left(||K||\frac{{(b-a)}^{j}}{j!}+M\frac{{(x-a)}^{j+1}}{j+1!}\right)\right)+{M}^{n}\left(||K||\frac{{(b-a)}^{n}}{n!}+M\frac{{(x-a)}^{n+1}}{n+1!}\right)\right\}||{y}_{0}||$ ... (3)
But since $(x-a)\le(b-a)$
$|{y}_{n+1}(x)|\le\left\{||K||\left(\sum_{j=0}^{n-1}{(||K||+M(b-a))}^{n-j}{M}^{j}\frac{{(b-a)}^{j}}{j!}\right)+{M}^{n}\left(||K||\frac{{(b-a)}^{n}}{n!}+M\frac{{(x-a)}^{n+1}}{n+1!}\right)\right\}||{y}_{0}||$ ... (4)
$\le\left\{||K||\left(\sum_{j=0}^{n}{(||K||+M(b-a))}^{n-j}{M}^{j}\frac{{{(b-a)}^{j}}}{j!}\right)+{M}^{n+1}\frac{{(x-a)}^{n+1}}{n+1!}\right\}||{y}_{0}||$ ... (5)
So whereas I need the form (2) in $x$ to carry the integration of ${(x-a)}^{j}$ , I ended up with (5) in which $(b-a)$ replaced $(x-a)$ in the first inside bracket. usually I must end in induction to exactly the same form except $n -> n+1$. Yet form (5) is really what I need except that I cannot start with $b-a$ instead because when integrated doesn't give $\frac{{(x-a)}^{n}}{n!}$ which what I need
I am really very grateful to sort out where is the problem
Sarrah
Thank you very much for your reply.
I will try to be more clear this time and in detail. The reason why it was not as clear, as it's lengthy. I have the following
$|{y}_{n}(x)|\le\int_{a}^{b} \,|k(x,s)| |{y}_{n-1}(s)| ds+\int_{a}^{x} \,|g(x,s)| |{y}_{n-1}(s)| ds$ , $x\in[a,b]$ $a,b$ real ... (1)
By defining operator $K$
$Ky=\int_{a}^{b} \,k(x,s) y(s) ds$
I define norms
$||K||={max}_{a<x<b}\int_{a}^{b} \,|k(x,s)|ds $ , $M={max}_{a<x<b}|g(x,s)|$ , $||y||={max}_{a<x<b}|y(x|$
From (1) $|{y}_{1}|\le||{y}_{0} ||K||+||{y}_{0}||M(x-a)$
Another iteration gives
$|{y}_{2}|\le||{y}_{0}|| {||K||}^{2}+||{y}_{0}|| ||K||M(x-a)+||{y}_{0}|| M||K|| (b-a)+||{y}_{0}||{M}^{2}\frac{{(x-a)}^{2}}{2!}$
In general for any $n$
$|{y}_{n}(x)|\le\left\{||K||\left(\sum_{j=0}^{n-1}{(||K||+M(b-a))}^{n-j-1}{M}^{j}\frac{{(x-a)}^{j}}{j!}\right)+{M}^{n}\frac{{(x-a)}^{n}}{n!}\right\}||{y}_{0}||$ ... (2)
MY PROBLEM STARTS HERE:
Instead of writing the above inequality for $n=3,4,$ etc.. I want to apply mathematical induction to prove (2). Assuming (2) is valid for $n$ I obtain using one further iteration
$|{y}_{n+1}(x)|\le\left\{||K||\left(\sum_{j=0}^{n-1}{(||K||+M(b-a))}^{n-j-1}{M}^{j}\left(||K||\frac{{(b-a)}^{j}}{j!}+M\frac{{(x-a)}^{j+1}}{j+1!}\right)\right)+{M}^{n}\left(||K||\frac{{(b-a)}^{n}}{n!}+M\frac{{(x-a)}^{n+1}}{n+1!}\right)\right\}||{y}_{0}||$ ... (3)
But since $(x-a)\le(b-a)$
$|{y}_{n+1}(x)|\le\left\{||K||\left(\sum_{j=0}^{n-1}{(||K||+M(b-a))}^{n-j}{M}^{j}\frac{{(b-a)}^{j}}{j!}\right)+{M}^{n}\left(||K||\frac{{(b-a)}^{n}}{n!}+M\frac{{(x-a)}^{n+1}}{n+1!}\right)\right\}||{y}_{0}||$ ... (4)
$\le\left\{||K||\left(\sum_{j=0}^{n}{(||K||+M(b-a))}^{n-j}{M}^{j}\frac{{{(b-a)}^{j}}}{j!}\right)+{M}^{n+1}\frac{{(x-a)}^{n+1}}{n+1!}\right\}||{y}_{0}||$ ... (5)
So whereas I need the form (2) in $x$ to carry the integration of ${(x-a)}^{j}$ , I ended up with (5) in which $(b-a)$ replaced $(x-a)$ in the first inside bracket. usually I must end in induction to exactly the same form except $n -> n+1$. Yet form (5) is really what I need except that I cannot start with $b-a$ instead because when integrated doesn't give $\frac{{(x-a)}^{n}}{n!}$ which what I need
I am really very grateful to sort out where is the problem
Sarrah