- #1
psie
- 269
- 32
- Homework Statement
- Compute the Fourier series of $$f(t)=\begin{cases} t+\pi &-\pi <t<0\\ 0&0\le t\le \pi. \end{cases}$$ and find the sum of ##\sum_{n=1}^\infty \frac1{(2n-1)^2}##.
- Relevant Equations
- There is the following theorem in this section of the book; suppose that ##f## has period ##2\pi##, and suppose that ##t_0## is a point where ##f## has one-sided limiting values and (generalized) one-sided derivatives. Then the Fourier series of ##f## converges for ##t=t_0## to the mean value ##\frac12(f(t_0+)+f(t_0-))##. In particular, if ##f## is continuous at ##t_0##, the sum of the series equals ##f(t_0)##.
So, the function is piecewise continuous (and differentiable), with (generalized) one-sided derivatives existing at the points of discontinuity. Hence I conclude from the theorem that the series converges pointwise for all ##t## to the function ##f##.
I've double checked with WolframAlpha that the coefficients are \begin{align} c_0&=\frac{\pi}{4} \nonumber \\ c_{2n}&=\frac{i}{4n}, \ n\neq0 \nonumber \\ c_{2n+1}&=\frac{i}{2(2n+1)}+\frac{1}{\pi(2n+1)^2}. \nonumber \end{align} Now, we have ##\sum_{n\in\mathbb Z} c_ne^{int}##, and I proceed with the following computation \begin{align} \sum_{n\in\mathbb Z} c_ne^{int}&=c_0+\sum_{\substack{n\in\mathbb Z \\ n\neq0}} c_{2n}e^{i2nt}+\sum_{n\in\mathbb Z}c_{2n+1}e^{i(2n+1)t} \tag1 \\ &=\frac{\pi}{4}+\sum_{\substack{n\in\mathbb Z \\ n\neq0}} \frac{i}{4n}e^{i2nt}+\sum_{n\in\mathbb Z } \left(\frac{i}{2(2n+1)}+\frac{1}{\pi(2n+1)^2}\right)e^{i(2n+1)t} \nonumber \\ &=\frac{\pi}{4}-\sum_{n=1}^\infty\frac{\sin(2n)t}{2n}-\sum_{n=0}^\infty \frac{\sin(2n+1)t}{2n+1}+\frac{2}{\pi}\sum_{n=0}^\infty\frac{\cos(2n+1)t}{(2n+1)^2}\nonumber \\ &= \frac{\pi}{4}-\sum_{n=1}^\infty\frac{\sin nt}{n}+\frac{2}{\pi}\sum_{n=1}^\infty\frac{\cos(2n-1)t}{(2n-1)^2}\nonumber. \end{align} To evaluate the sum in the problem, I set ##t=0## and keep in mind that this is a discontinuous point. I get $$\frac12(f(0+)-f(0-))=\frac{\pi}{2}=\frac{\pi}{4}+\frac{2}{\pi}\sum_{k=1}^\infty \frac1{(2n-1)^2},$$ i.e. ##\sum_{k=1}^\infty \frac1{(2n-1)^2}=\frac{\pi^2}{8}##.
I'm doubting my own computation though. The equality in ##(1)##, when we split the sum into even and odd indexed sums, doesn't this require absolute convergence of the series?
I've double checked with WolframAlpha that the coefficients are \begin{align} c_0&=\frac{\pi}{4} \nonumber \\ c_{2n}&=\frac{i}{4n}, \ n\neq0 \nonumber \\ c_{2n+1}&=\frac{i}{2(2n+1)}+\frac{1}{\pi(2n+1)^2}. \nonumber \end{align} Now, we have ##\sum_{n\in\mathbb Z} c_ne^{int}##, and I proceed with the following computation \begin{align} \sum_{n\in\mathbb Z} c_ne^{int}&=c_0+\sum_{\substack{n\in\mathbb Z \\ n\neq0}} c_{2n}e^{i2nt}+\sum_{n\in\mathbb Z}c_{2n+1}e^{i(2n+1)t} \tag1 \\ &=\frac{\pi}{4}+\sum_{\substack{n\in\mathbb Z \\ n\neq0}} \frac{i}{4n}e^{i2nt}+\sum_{n\in\mathbb Z } \left(\frac{i}{2(2n+1)}+\frac{1}{\pi(2n+1)^2}\right)e^{i(2n+1)t} \nonumber \\ &=\frac{\pi}{4}-\sum_{n=1}^\infty\frac{\sin(2n)t}{2n}-\sum_{n=0}^\infty \frac{\sin(2n+1)t}{2n+1}+\frac{2}{\pi}\sum_{n=0}^\infty\frac{\cos(2n+1)t}{(2n+1)^2}\nonumber \\ &= \frac{\pi}{4}-\sum_{n=1}^\infty\frac{\sin nt}{n}+\frac{2}{\pi}\sum_{n=1}^\infty\frac{\cos(2n-1)t}{(2n-1)^2}\nonumber. \end{align} To evaluate the sum in the problem, I set ##t=0## and keep in mind that this is a discontinuous point. I get $$\frac12(f(0+)-f(0-))=\frac{\pi}{2}=\frac{\pi}{4}+\frac{2}{\pi}\sum_{k=1}^\infty \frac1{(2n-1)^2},$$ i.e. ##\sum_{k=1}^\infty \frac1{(2n-1)^2}=\frac{\pi^2}{8}##.
I'm doubting my own computation though. The equality in ##(1)##, when we split the sum into even and odd indexed sums, doesn't this require absolute convergence of the series?
Last edited: