- #1
schniefen
- 178
- 4
- Homework Statement
- I have a question about a definition of the radius of convergence, in particular about a small detail regarding a property of the supremum.
- Relevant Equations
- If ##M=\sup (A)##, then for every ##M'<M##, there exists an ##x\in A## such that ##x>M'##.
I am reading the following passage in these lecture notes (chapter 10, in the proof of theorem 10.3) on power series (and have seen similar statements in other texts):
I'm confused about ##|x_0|<R##.
If ##M=\sup (A)##, then for every ##M'<M##, there exists an ##x\in A## such that ##x>M'##. Then, using the definition of an upper bound (in e.g. Spivak's Calculus), it follows that ##M'<x\color{red}{\leq} M##. Suppose ##A=\{1,2,3\}##, then ##2.8<3##, but stating ##2.8<3<3## would be incorrect.
Why is it correct then to state ##|x_0|<R## in this case?
Let $$R=\sup \left\{\left|x\right|\ge 0:\sum a_nx^n \text{ converges}\right\}.$$ If ##R=0##, then the series converges only for ##x=0##. If ##R>0##, then the series converges absolutely for every ##x\in \mathbb R## with ##|x|<R##, since it converges for some ##x_0\in\mathbb R## with ##|x|<|x_0|<R##.
I'm confused about ##|x_0|<R##.
If ##M=\sup (A)##, then for every ##M'<M##, there exists an ##x\in A## such that ##x>M'##. Then, using the definition of an upper bound (in e.g. Spivak's Calculus), it follows that ##M'<x\color{red}{\leq} M##. Suppose ##A=\{1,2,3\}##, then ##2.8<3##, but stating ##2.8<3<3## would be incorrect.
Why is it correct then to state ##|x_0|<R## in this case?