- #1
psie
- 269
- 32
- Homework Statement
- Find a basis for the solution space of (a) ##t(t-1)^2x''-2x=0, 0<t<1## and (b) ##4(t^2+t^3)x''-4tx'+(3+t)x=0, t>0##.
- Relevant Equations
- This exercise appears in a section on the Frobenius' method. Some results related to this method are given below.
Definition 2. The differential equation $$x''(z)+p(z)x'(z)+q(z)x(x)=0\tag1$$ is called weakly singular at the origin if ##p(z)## has at most a simple pole and ##q(z)## at most a double pole there, in other words, if $$p(z)=\frac{p_0}{z}+p_1+p_2z+\ldots,\quad q(z)=\frac{q_0}{z^2}+\frac{q_1}{z}+q_2+q_3z\ldots .$$
Theorem 6. A basis for the solution space of ##(1)## is $$z^\mu a(z),\quad z^\nu b(z),$$ or $$z^\mu a(z),\quad (z^\mu \log(z))a(z)+z^\nu b(z).$$ Here ##a(z)## and ##b(z)## are analytic functions in a neighborhood of the origin.
##\mu## is a root of the so-called indicial equation ##I(\lambda)=\lambda(\lambda-1)+p_0\lambda+q_0##. ##\nu## can also be a root of the indicial equation, or we may have ##\mu=\nu##
My attempt so far is trying to characterize both equations according to Definition 2, as well as identifying ##p_0## and ##q_0##, so I can obtain the indicial equation. Then I could probably solve this myself.
My strategy is to rewrite the equation on the form given in Definition 2, so for (a) $$x''-\frac{2}{t(t-1)^2}x=0,$$ and (b) $$x''-\frac{t}{t^2+t^3}x'+\frac{3+t}{t^2+t^3}x=0\iff x''-\frac{1}{t(1+t)}x'+\frac{3+t}{t^2(1+t)}x=0.$$ I struggle with the fact that both these equations do not seem to satisfy Definition 2. In particular, there seems to be a pole both at the origin and at ##z=\pm1##. I have not encountered a problem like this before and I'm a little puzzled on how to continue. Any ideas?