- #1
Brasi333
- 6
- 0
Homework Statement
The accelration of a marble in a certain fluid is proportional to the speed of the marble squared and given (in SI units) by a=-3.00v2 for v>0. If the marble enters this fluid with a speed of 1.50 m/s, how long will it take before the marble's speed is reduced to half of its initial value?
Homework Equations
vf=vi+at
Average of f(x)=integral of f(x) with respect to x from a to b, divided by b-a.
The Attempt at a Solution
*Everything is in meters and seconds*. As this problem is very straightforward except for the acceleration, I began with using the kinematic equation above that involves vf, vi, a, and t. Since the acceleration varies with respect to speed, I figured that I would need the average acceleration. Integrating -3.00v2 from 1.5 (vi) to 0.75 (vf; half of vi) I got 2.953125. Then, dividing this by -0.75 (0.75-1.5) I got -3.9375, which should be the average acceleration. Going back to the kinematic equation, solving for t yields t=(vf-vi)/a, where I have the following values:
vf= 0.75
vi= 1.5
a=-3.9375 (average acceleration, calculated above).
Using these values I get a time of t=0.190 seconds. The answer in the book is 0.222 seconds. At this point I've gone over the problem multiple times and I can't see what I'm doing wrong. However, this is my first time doing physics in a long while, and my method is of my own creation, not from the book or anything, so I could be off the ball on that. By working backwards I can see that the average acceleration should be -3.375. Any help would be greatly appreciated, thank you.