- #1
redtree
- 331
- 14
- TL;DR Summary
- Mappings from one group to another
I apologize for the simple question, but it has been bothering me. One can write a relationship between groups, such as for example between Spin##(n)## and SO##(n)## as follows:
\begin{equation}
1 \rightarrow \{-1,+1 \} \rightarrow \text{Spin}(n) \rightarrow \text{SO}(n) \rightarrow 1
\end{equation}
when ##n \neq 2##
In this context, Spin##(n)## is the double covering of SO##(n)##, which, as far as I understand, means there is a 2-to-1 mapping from Spin##(n)## to SO##(n)## with neighborhood isomorphism between the groups.
How would one write the inverse relation, i.e., the many-to-one relation between groups. In the case of SO##(n)## and Spin##(n)##, how would one write the the 1-to-2 relation from SO##(n)## to Spin##(n)## where neighborhood isomorphism is preserved?
\begin{equation}
1 \rightarrow \{-1,+1 \} \rightarrow \text{Spin}(n) \rightarrow \text{SO}(n) \rightarrow 1
\end{equation}
when ##n \neq 2##
In this context, Spin##(n)## is the double covering of SO##(n)##, which, as far as I understand, means there is a 2-to-1 mapping from Spin##(n)## to SO##(n)## with neighborhood isomorphism between the groups.
How would one write the inverse relation, i.e., the many-to-one relation between groups. In the case of SO##(n)## and Spin##(n)##, how would one write the the 1-to-2 relation from SO##(n)## to Spin##(n)## where neighborhood isomorphism is preserved?