- #1
bergausstein
- 191
- 0
just want to know if my answers are correct.
1. for any set A, a set of subsets of A is said to be exhaustive if the union of these subsets is A, and is said to be disjoint if no two of the subsets have any element in common. if $\displaystyle A\,=\,\{a,\,b,\,\,c\},\,$ tell whether the following set of subsets is exhaustive;disjoint.
a. $\{a\},\,\{b\}$ - disjoint
b. $\{a\},\,\{b,c\}$ - exhaustive and disjoint
c. $\{a,b\},\,\{b,c\}$ - exhaustive
d. $\{a\},\,\{a,b\}$ - neither
e. $\{a\},\,\{b\},\,\{c\}$ - exhaustive and disjoint
2. Tell under what conditions on the sets A and B we would have each of the following:
a. $\displaystyle A\cap B\,=\,\emptyset$ - if A & B are disjoint
b. $\displaystyle A\cap B\,=\,U$ - if both A & B are $\emptyset'$
c. $\displaystyle A\cup B\,=\,U$ - if A or B is $\emptyset'$
d. $\displaystyle A\cup B\,=\,\emptyset$ - if both A and B are $\emptyset$
e. $\displaystyle A\cap U\,=\,A$ - if $A\subset B$
f. $\displaystyle A\cup B\,=\,A$ -if $B\subset A$
g. $\displaystyle A\cap \emptyset\,=\,\emptyset$ - if A is $\emptyset$
h. $\displaystyle A\cap U\,=\,A$ - if A is $\emptyset$
i. $\displaystyle A\cup U\,=\,U$ - if $A\subset B$
j. $\displaystyle A\cup U\,=\,A$ - if A is $\emptyset$
k. $\displaystyle A\cup \emptyset\,=\,U$ - if A is $\emptyset'$
l. $\displaystyle A\cup\emptyset\,=\,\emptyset$ - if A is $\emptyset$
please tell me where I'm wrong and teach me how to approach that problem properly. thanks!:)
1. for any set A, a set of subsets of A is said to be exhaustive if the union of these subsets is A, and is said to be disjoint if no two of the subsets have any element in common. if $\displaystyle A\,=\,\{a,\,b,\,\,c\},\,$ tell whether the following set of subsets is exhaustive;disjoint.
a. $\{a\},\,\{b\}$ - disjoint
b. $\{a\},\,\{b,c\}$ - exhaustive and disjoint
c. $\{a,b\},\,\{b,c\}$ - exhaustive
d. $\{a\},\,\{a,b\}$ - neither
e. $\{a\},\,\{b\},\,\{c\}$ - exhaustive and disjoint
2. Tell under what conditions on the sets A and B we would have each of the following:
a. $\displaystyle A\cap B\,=\,\emptyset$ - if A & B are disjoint
b. $\displaystyle A\cap B\,=\,U$ - if both A & B are $\emptyset'$
c. $\displaystyle A\cup B\,=\,U$ - if A or B is $\emptyset'$
d. $\displaystyle A\cup B\,=\,\emptyset$ - if both A and B are $\emptyset$
e. $\displaystyle A\cap U\,=\,A$ - if $A\subset B$
f. $\displaystyle A\cup B\,=\,A$ -if $B\subset A$
g. $\displaystyle A\cap \emptyset\,=\,\emptyset$ - if A is $\emptyset$
h. $\displaystyle A\cap U\,=\,A$ - if A is $\emptyset$
i. $\displaystyle A\cup U\,=\,U$ - if $A\subset B$
j. $\displaystyle A\cup U\,=\,A$ - if A is $\emptyset$
k. $\displaystyle A\cup \emptyset\,=\,U$ - if A is $\emptyset'$
l. $\displaystyle A\cup\emptyset\,=\,\emptyset$ - if A is $\emptyset$
please tell me where I'm wrong and teach me how to approach that problem properly. thanks!:)
Last edited: