- #1
physicsxanime
- 13
- 3
- Homework Statement
- See screenshot next
- Relevant Equations
- hermitian operator ##A^\dagger = A##
antihermitian operator ##A^\dagger = -A##
A. I can show that A is either hermitian or antihermitian by
$$(B^\dagger B=1-A^2)^\dagger$$
$$B^\dagger B=1-A^\dagger A^\dagger$$
comparing, we know that
$$A^\dagger = \pm A$$
I don't know how I can make use of the communtation relation to get hermiticity of B. But I know that A and B must have same hermiticity because hermitian * antihermitian = 0 and the communtation relation will not make sense.
B. The fact that the question hints on only the other eigenstate is weird, does the above imply A and B are 2x2?
Anyway, consider the state ##B|a=0>##
$$AB|a=0> = BA|a=0> + B|a=0> = 0 + B|a=0>$$
Therefore, ##B|a=0>## is a eigenstate of eigenvalue 1.
C. This need result in A.
note that we can work in the basis of A
##|a=0> =
\begin{pmatrix}
1\\
0
\end{pmatrix}
##
##B|a=0> =
\begin{pmatrix}
0\\
1
\end{pmatrix}
##
$$
We see ##B
\begin{pmatrix}
0\\
1
\end{pmatrix}
= B^2|a=0> = \pm B^\dagger B|a=0> = \pm(1-A^2)|a=0> = \pm |a=0>
##
Very simple matrix to diagonalize