- #1
frerk
- 19
- 1
Hello :-) I have a small question for you :-)
1. Homework Statement
The Operator [tex] e^{A} [/tex] is definded bei the Taylor expanion [tex] e^{A} = \sum\nolimits_{n=0}^\infty \frac{A^n}{n!} . [/tex]
Prove that if [tex] |a \rangle[/tex] is an eigenstate of A, that is if [tex] A|a\rangle = a|a\rangle[/tex], then [tex] |a\rangle[/tex] is an eigenstate of [tex] e^{A}[/tex] with the eigenvalue of [tex] e^{a}.[/tex]
I show you a very bad attempt:
[tex] A|a \rangle = a|a \rangle\quad\quad\quad| : |a\rangle |e^{...} [/tex]
[tex] e^A =e^a \quad\quad\quad| * |a\rangle[/tex]
[tex] e^A|a\rangle = e^a|a\rangle [/tex]
I would be glad about an info how to do it right... thank you :)
1. Homework Statement
The Operator [tex] e^{A} [/tex] is definded bei the Taylor expanion [tex] e^{A} = \sum\nolimits_{n=0}^\infty \frac{A^n}{n!} . [/tex]
Prove that if [tex] |a \rangle[/tex] is an eigenstate of A, that is if [tex] A|a\rangle = a|a\rangle[/tex], then [tex] |a\rangle[/tex] is an eigenstate of [tex] e^{A}[/tex] with the eigenvalue of [tex] e^{a}.[/tex]
The Attempt at a Solution
I show you a very bad attempt:
[tex] A|a \rangle = a|a \rangle\quad\quad\quad| : |a\rangle |e^{...} [/tex]
[tex] e^A =e^a \quad\quad\quad| * |a\rangle[/tex]
[tex] e^A|a\rangle = e^a|a\rangle [/tex]
I would be glad about an info how to do it right... thank you :)
Last edited: