- #1
Celso
- 33
- 1
- Homework Statement
- I've been given an operator ##\hat{A}## that has 3 orthonormal vectors as degenerate eigenstates corresponding to the same eigenvalue ##a##.
I know how the hamiltonian acts on these vectors and I want to use this information to check whether ##\hat{H}## and ##\hat{A}## commute or not.
- Relevant Equations
- ## \hat{A} |1> a|1>, \hat{A} |2> a|2>, \hat{A} |3> a|3>##
##\hat{H} = \begin{bmatrix} \sigma & 0 & \sigma \\ 0 & \sigma & \delta \\ \sigma & \delta & \sigma \end{bmatrix} ##
With this information I concluded that the diagonal elements of ##\hat{A}## are equal to the eigenvalue ##a##, so ##\hat{A} = \begin{bmatrix} a & A_{12} & A_{13} \\ A_{21}& a & A_{23}\\A_{31} & A_{32} & a \end{bmatrix}## but I can't see how to go from this to the commuting relation, since I don't know the other terms.