- #1
nrm
- 7
- 0
Question: [ A rectangular box, whose edges are parallel to the coordinate axes, is inscribed in the ellipsoid 96x^2 + 4y^2 + 4z^2 = 36, What is the greatest possible volume for such a box ]
I realize that the volume of the box: V = (2x)(2y)(2z) = 8xyz
Thus far I've solved for z^2 in the equation of the ellipsoid and then squared the volume so that I could make the substitution easier
V^2 = 64(x^2)(y^2)(9-24x^2-y^2)
Then I've taken the partial derivates of this to look cor critical points, but here I get an algebraic nightmare and can't find critical points. I'm wondering if my initial steps are correct, it's the only thing I could think of doing.
Any help would be great. thank you
I realize that the volume of the box: V = (2x)(2y)(2z) = 8xyz
Thus far I've solved for z^2 in the equation of the ellipsoid and then squared the volume so that I could make the substitution easier
V^2 = 64(x^2)(y^2)(9-24x^2-y^2)
Then I've taken the partial derivates of this to look cor critical points, but here I get an algebraic nightmare and can't find critical points. I'm wondering if my initial steps are correct, it's the only thing I could think of doing.
Any help would be great. thank you