- #1
doug1122
- 1
- 0
Homework Statement
If you take an 8.5in by 11in piece of paper and fold one corner over so it just touches the opposite edge as seen in figure (http://wearpete.com/myprob.jpg ). Find the value of x that makes the area of the right triangle A a maximum?
Homework Equations
A = 1/2(xy)
x2+y2=(8.5-y)2
The Attempt at a Solution
x2+y2=(8.5-y)2
x = sqrt((8.5-y)2-y2)
A = 1/2(y)(sqrt((8.5-y)2-y2))
da/dx = ((y2-4.25y)/sqrt((8.5-y)2-y2))+1/2(sqrt(-17y-72.25))
I know that at da/dx=0 the triangle is maximized but da/dx is undefined at y=0 (y graphically). I am pretty sure my derivative is right but maybe I missed something there. Thanks for taking a look.
Last edited by a moderator: