- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
From the binomial theorem, we have
$\displaystyle \begin{align*}\left(1+\dfrac{1}{5}\right)^{1000}&={1000 \choose 0}\left(\dfrac{1}{5}\right)^{0}+{1000 \choose 1}\left(\dfrac{1}{5}\right)^{1}+{1000 \choose 2}\left(\dfrac{1}{5}\right)^{2}+\cdots+{1000 \choose 1000}\left(\dfrac{1}{5}\right)^{1000}\\&=A_0+A_1+A_2+\cdots+A_{1000} \end{align*}$
where $\displaystyle A_k={1000 \choose k}\left(\dfrac{1}{5}\right)^{k}$.
For which $k$ is $A_k$ the largest?
$\displaystyle \begin{align*}\left(1+\dfrac{1}{5}\right)^{1000}&={1000 \choose 0}\left(\dfrac{1}{5}\right)^{0}+{1000 \choose 1}\left(\dfrac{1}{5}\right)^{1}+{1000 \choose 2}\left(\dfrac{1}{5}\right)^{2}+\cdots+{1000 \choose 1000}\left(\dfrac{1}{5}\right)^{1000}\\&=A_0+A_1+A_2+\cdots+A_{1000} \end{align*}$
where $\displaystyle A_k={1000 \choose k}\left(\dfrac{1}{5}\right)^{k}$.
For which $k$ is $A_k$ the largest?