Optimizing Polar Axis for Dipole in Polar Coordinates

AI Thread Summary
The discussion revolves around optimizing the polar axis for a dipole in polar coordinates, specifically in relation to the electric potential and field equations. The potential is suggested to be in the form V = (1/4πε₀)(p·r)/r³, and there's uncertainty about its correctness. Participants are encouraged to clarify the relationship between the potential and the electric field, which is expressed in coordinate-free notation as E = (1/4πε₀)(3r·p - r²p)/r⁵. The key to solving the problem efficiently lies in the appropriate selection of the polar axis. Proper alignment can simplify the calculations significantly.
DaraRychenkova
Messages
1
Reaction score
0
Homework Statement
- Determination of the dipole (p=ql). Find the dipole potential at a distance r much larger than the size of the dipole itself. Calculate the field of the dipole using the relationship between the potential and the field.



1. Solve the problem of finding the dipole field using the expression for the potential obtained in the previous problem in polar coordinates
Relevant Equations
Dipole, electrostatic
I don't know how to get the result referring to the previous task. Is my decision correct?
IMG_20230317_145638.jpg
 

Attachments

  • IMG_20230317_145621.jpg
    IMG_20230317_145621.jpg
    46.5 KB · Views: 102
Physics news on Phys.org
The potential in the "previous problem" is probably something like $$V=\frac{1}{4\pi\epsilon_0}\frac{\mathbf{p}\cdot\mathbf{r}}{r^3}.$$ If it is in some other form, use that. What do you think "the relationship between the potential and the field" is?
 
  • Like
Likes MatinSAR, vanhees71 and PhDeezNutz
I can't make sense of the posted scan. Obviously you've given the electric field in coordinate-free notation,
$$\vec{E}=\frac{1}{4 \pi \epsilon_0 r^5}(3 \vec{r} \vec{r} \cdot \vec{p}-r^2 \vec{p}).$$
Now first think about, how to choose your polar axis. With the right choice, it's very quickly solved!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top