- #1
antiemptyv
- 34
- 0
Homework Statement
Prove that in any group the orders of [tex]ab[/tex] and [tex]ba[/tex] equal.
Homework Equations
n/a
The Attempt at a Solution
Let [tex](ab)^{x} = 1.[/tex]
Using associativity, we get
[tex](ab)^{x} = a(ba)^{x-1}b = 1.[/tex]
Because of the existence of inverses--namely [tex]a^{-1}[/tex] and [tex]b^{-1}[/tex]--this implies
[tex](ba)^{x-1} = a^{-1}b^{-1} = (ba)^{-1}.[/tex]
Multiplying both sides by [tex](ba) = ((ba)^{-1})^{-1}[/tex] yields
[tex](ba)^{x} = 1.[/tex]
So,
[tex](ab)^{x} = (ba)^{x} = 1[/tex],
and the orders [tex]ab[/tex] and [tex]ba[/tex] are the same.
---
How is that?
Last edited: