- #1
Artusartos
- 247
- 0
Homework Statement
I want to find the orders of the elements in [itex]Z_8/(Z_4 \times Z_4)[/itex], [itex](Z_4 \times Z_2)/(Z_2 \times Z_2)[/itex], and [itex]D_8/(Z_2 \times Z_2)[/itex].
Homework Equations
The Attempt at a Solution
The elements of [itex]Z_2 \times Z_2[/itex] are (0,0), (1,0), (0,1), (1,1), and the elements of [itex]Z_8[/itex] are of course 1, 2, 3, 4, 5, 6, and 7.
So elements of [itex]Z_8/(Z_2 \times Z_2)[/itex] must be of the form…
[tex] (0,0), (1,0), (0,1), (1,1) [/tex]
[tex]1+(0,0), 1+ (1,0), 1+ (0,1), 1+ (1,1) [/tex]
[tex]2+(0,0), 2+(1,0),2+ (0,1), 2+(1,1) [/tex]
[tex]3+(0,0), 3+(1,0), 3+(0,1), 3+(1,1) [/tex]
…
[tex]7+(0,0), 7+(1,0), 7+(0,1), 7+(1,1) [/tex]
But since the number we are adding to [itex]Z_2 \times Z_2[/itex] is mod 8, none of these are equal. So I don’t know how we have 2 elements [itex]Z_2 \times Z_2[/itex].
I’m having the same problem with [itex]D_8/(Z_2 \times Z_2)[itex].
We know that [itex]D_8 = \{e, b, b^2, b^3, a, ba, b^2a, b^3a \}[/itex]
[tex] (0,0), (1,0), (0,1), (1,1) [/tex]
[tex]b+(0,0), b+(1,0), b+ (0,1), b+(1,1)[/tex]
…
[tex]b^3a+(0,0), b^3a+(1,0), b^3a+(0,1), b^3a+(1,1)[/tex]
But, for example, we know that [itex]b[/itex] has order 4, right?
Last edited: