- #1
karush
Gold Member
MHB
- 3,269
- 5
nmh{909}
For each group in the following list,
$$ \Bbb{Z}_{12}, \qquad U(10)\qquad U(12) \qquad D4 $$
(a) find the order of the group
$$|\Bbb{Z}_{12}|=12$$
(b) the order of each element in the group.ok the eq I think we are supposed to use is
$$\textit{ if } o(g)=n \textit{ then } o(g^n)= n/(n,k)$$
the alleged a answer for (a) is $\Bbb{Z}_{12}$
for (b)$o(0)=1, \quad $o(1)=12$ \quad $o(2)=6$\quad $o(3)=4$\quad $o(4)=3$,\quad $o(5)=12$
\quad $o(6)=2$\quad $o(7)=12$\quad $o(8)=3$\quad $o(9)=4$\quad $o(10)=6$\quad $o(11)=12$I am sure this is simple but don't see it
For each group in the following list,
$$ \Bbb{Z}_{12}, \qquad U(10)\qquad U(12) \qquad D4 $$
(a) find the order of the group
$$|\Bbb{Z}_{12}|=12$$
(b) the order of each element in the group.ok the eq I think we are supposed to use is
$$\textit{ if } o(g)=n \textit{ then } o(g^n)= n/(n,k)$$
the alleged a answer for (a) is $\Bbb{Z}_{12}$
for (b)$o(0)=1, \quad $o(1)=12$ \quad $o(2)=6$\quad $o(3)=4$\quad $o(4)=3$,\quad $o(5)=12$
\quad $o(6)=2$\quad $o(7)=12$\quad $o(8)=3$\quad $o(9)=4$\quad $o(10)=6$\quad $o(11)=12$I am sure this is simple but don't see it
Last edited: