Orientation of Major Axis for polarized light

AI Thread Summary
Case 1 successfully demonstrated linearly polarized light at an angle of π/4, while Case 2 presented challenges with an undefined angle α. The conclusion for Case 2 indicates circularly polarized light due to the relationship Eα = Eα±π/2 and the fact that cos(δ) equals zero. It is noted that circular polarization lacks a defined axis, explaining the undefined α. To determine the handedness of the circular polarization, further analysis is required, potentially involving the application of Euler's equation and additional resources like Jones calculus.
Blanchdog
Messages
56
Reaction score
22
Homework Statement
Consider the Jones vector: $$\begin{pmatrix}A \\Be^{i \delta}\end{pmatrix}$$ For the following cases, what is the orientation of the major axis, and
what is the ellipticity of the light? Case I: ##A = B = \frac{1}{\sqrt{2}}; \delta = 0;## Case II: ##A = B = \frac{1}{\sqrt{2}}; \delta = \frac{\pi}{2};## Case III: ##A = B = \frac{1}{\sqrt{2}}; \delta = \frac{\pi}{4}##
Relevant Equations
$$\alpha = \frac{1}{2}tan^{-1}(\frac{2 A B cos(\delta)}{A^2-B^2})$$
$$E_{\alpha}=|E_{eff}|\sqrt{A^2 cos^2(\alpha) + B^2 sin^2(\alpha) + 2 A B cos(\delta)sin(2 \alpha)}$$
$$E_{\alpha \pm \frac{pi}{2}}=|E_{eff}|\sqrt{A^2 cos^2(\alpha) + B^2 sin^2(\alpha) - 2 A B cos(\delta)sin(2 \alpha)}$$
Case 1 worked out great, I found it to be linearly polarized light at an angle ##\alpha = \frac{\pi}{4}##, but Case 2 is giving me trouble. As best I can tell, ##\alpha## is undefined in case 2. How do I solve case 2?
 
Physics news on Phys.org
I believe I figured it out, though I would love confirmation. Since ##cos(\delta) = cos(\frac{\pi}{2})=0## and ## A = B##, we end up with ## E_\alpha = E_{\alpha_\pm+\frac{pi}{2}}##. That means we have circularly polarized light! So of course ##\alpha## is undefined; a circle has no determined axes!
 
You are correct. Your professor might also want you to say if it is right-hand or left-hand circular polarized. More information can be found here https://en.wikipedia.org/wiki/Jones_calculus
And you can use euler's equation to make the exponential into trig functions and plug in the angle.
 
stephen8686 said:
You are correct. Your professor might also want you to say if it is right-hand or left-hand circular polarized. More information can be found here https://en.wikipedia.org/wiki/Jones_calculus
And you can use euler's equation to make the exponential into trig functions and plug in the angle.
How can I tell the handedness?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top