- #1
drawar
- 132
- 0
Homework Statement
Let ##n## be a unit vector in ##V## . Define a linear operator ##F_n## on ##V## such that
$$F_n(u) = u-2\langle u, n \rangle n \; \mathrm{for} \; u \in V.$$
##F_n## is called the reflection on ##V## along the direction of ##n##. Let ##S## be an orthogonal linear operator on ##V## and let ##W = \left\{u \in V | S(u) = u\right\}##. Suppose ##W^\perp## is not empty and ##w## is a nonzero vector in ##W^\perp##.
(a) Find a unit vector ##n## such that ##F_n(S(w))=w##.
(b) Prove that ##W \subsetneq E_1(F_n \circ S)##, where ##n## is the unit vector obtain in (a) and ##E_1(F_n \circ S)## denotes the eigenspace of ##F_n \circ S## associated with 1.
Homework Equations
##S## is orthogonal iff ##||S(u)||=||u||## for all ##u \in V##
The Attempt at a Solution
Okay I admit I have no idea how to do either of the questions but I would really appreciate some help to do (a) because without getting it done first, I wouldn't be able to proceed to (b). So right now all I can do for (a) is writing down the equation I'm supposed to solve, hoping something useful would pop up and lead me straight to the answer but it doesn't seem that easy:
$$S(w)-2 \langle S(w),n \rangle n = w.$$
Honestly I'm stuck at here, is there any way I can do about it?