- #1
Dustinsfl
- 2,281
- 5
$$
\left.(\phi_n\phi_m' - \phi_m\phi_n')\right|_0^L + (\lambda_m^2 - \lambda_n^2)\int_0^L\phi_n\phi_m dx = 0
$$
where $\phi_{n,m}$ and $\lambda_{n,m}$ represent distinct modal eigenfunctions which satisfy mixed boundary conditions at $x = 0,L$ of the form
\begin{alignat*}{3}
a\phi(0) + b\phi'(0) & = & 0\\
c\phi(L) + d\phi'(L) & = & 0
\end{alignat*}
Show that the eigenfunctions are orthogonal.
$$
\int_0^L\phi_m\phi_m dx = 0.
$$
I not sure how to proceed since there are constants a,b,c,d.
If they weren't there, I would proceed as
$$
(\lambda_m^2 - \lambda_n^2)\int_0^L\phi_n\phi_m dx = -\left.(\phi_n\phi_m' - \phi_m\phi_n')\right|_0^L
$$
\begin{alignat*}{3}
\phi(0) &= &-\phi'(0) \\
\phi(L) &=& -\phi'(L)
\end{alignat*}
Therefore,
$$
(\lambda_m^2 - \lambda_n^2)\int_0^L\phi_n\phi_m dx = 0\iff \int_0^L\phi_n\phi_m dx = 0
$$
\left.(\phi_n\phi_m' - \phi_m\phi_n')\right|_0^L + (\lambda_m^2 - \lambda_n^2)\int_0^L\phi_n\phi_m dx = 0
$$
where $\phi_{n,m}$ and $\lambda_{n,m}$ represent distinct modal eigenfunctions which satisfy mixed boundary conditions at $x = 0,L$ of the form
\begin{alignat*}{3}
a\phi(0) + b\phi'(0) & = & 0\\
c\phi(L) + d\phi'(L) & = & 0
\end{alignat*}
Show that the eigenfunctions are orthogonal.
$$
\int_0^L\phi_m\phi_m dx = 0.
$$
I not sure how to proceed since there are constants a,b,c,d.
If they weren't there, I would proceed as
$$
(\lambda_m^2 - \lambda_n^2)\int_0^L\phi_n\phi_m dx = -\left.(\phi_n\phi_m' - \phi_m\phi_n')\right|_0^L
$$
\begin{alignat*}{3}
\phi(0) &= &-\phi'(0) \\
\phi(L) &=& -\phi'(L)
\end{alignat*}
Therefore,
$$
(\lambda_m^2 - \lambda_n^2)\int_0^L\phi_n\phi_m dx = 0\iff \int_0^L\phi_n\phi_m dx = 0
$$