I Orthogonality of Eigenvectors of Linear Operator and its Adjoint

ughpleasenope
Messages
2
Reaction score
0
Suppose we have V, a finite-dimensional complex vector space with a Hermitian inner product. Let T: V to V be an arbitrary linear operator, and T^* be its adjoint.

I wish to prove that T is diagonalizable iff for every eigenvector v of T, there is an eigenvector u of T^* such that <u, v> is not equal to 0.

I've been thinking about generalized eigenvectors, but have not really gotten anywhere.
 
Physics news on Phys.org
The direction where you assume T is diagonalizable is pretty straightforward I think?

The other direction is not immediately obviously true to me but sounds plausible, I'll sleep on it.
 
  • Like
Likes ughpleasenope
Office_Shredder said:
The direction where you assume T is diagonalizable is pretty straightforward I think?

The other direction is not immediately obviously true to me but sounds plausible, I'll sleep on it.
Would you mind elaborating? I've struggled with this for a while.
 
If T is diagonalizable, then you can write down a basis of V which are all eigenvectors of T.

What kind of basis of ##V^*## do you get from this? (I guess if your class is very matrix based this question might not make sense)
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top