- #1
linearishard
- 8
- 0
Hi!
I have an orthonormal basis for vector space $V$, $\{u_1, u_2, ..., u_n\}$. If $(v_1, v_2, ..., v_n) = (u_1, u_2, ... u_n)A$ where $A$ is a real $n\times n$ matrix, how do I prove that $(v_1, v_2, ... v_n)$ is an orthonormal basis if and only if $A$ is an orthogonal matrix?
Thanks!
I have an orthonormal basis for vector space $V$, $\{u_1, u_2, ..., u_n\}$. If $(v_1, v_2, ..., v_n) = (u_1, u_2, ... u_n)A$ where $A$ is a real $n\times n$ matrix, how do I prove that $(v_1, v_2, ... v_n)$ is an orthonormal basis if and only if $A$ is an orthogonal matrix?
Thanks!
Last edited by a moderator: