Oscar's question via email about solving a DE using Laplace Transforms

In summary, the solution to the given differential equation using Laplace Transforms is: $\displaystyle y\left( t \right) = \left[ 10 - 12\,\mathrm{e}^{-\left( t - 6 \right) } + 2\,\mathrm{e}^{-6\,\left( t - 6 \right) } \right] H\left( t - 6 \right) - 4\,\mathrm{e}^{-t} $.
  • #1
Prove It
Gold Member
MHB
1,465
24
Solve $\displaystyle \frac{\mathrm{d}^2y}{\mathrm{d}t^2} + 7\,\frac{\mathrm{d}y}{\mathrm{d}t} + 6\,y = 60\,H\left( t - 6 \right) , \quad y\left( 0 \right) = -4, \quad y'\left( 0 \right) = 4 $ using Laplace Transforms.

Taking the Laplace Transform of the equation gives

$\displaystyle \begin{align*} s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) + 7 \left[ s\,Y\left( s \right) - y\left( 0\right) \right] + 6\,Y\left( s \right) &= \frac{60\,\mathrm{e}^{-6\,s}}{s} \\
s^2\,Y\left( s \right) - s\left( - 4\right) - 4 + 7\left[ s \,Y\left( s \right) - \left( -4 \right) \right] + 6\,Y\left( s \right) &= \frac{60\,\mathrm{e}^{-6\,s}}{s} \\
s^2\,Y\left( s \right) + 4\,s - 4 + 7\,s\,Y\left( s \right) + 28 + 6\,Y\left( s \right) &= \frac{60\,\mathrm{e}^{-s}}{s} \\
\left( s^2 + 7\,s + 6 \right) Y\left( s \right) + 4\,s + 24 &= \frac{60\,\mathrm{e}^{-6\,s}}{s} \\
\left( s + 1 \right) \left( s + 6 \right) Y\left( s \right) + 4 \left( s + 6 \right) &= \frac{60\,\mathrm{e}^{-6\,s}}{s} \
\left( s + 1 \right) Y\left( s \right) + 4 &= \frac{60\,\mathrm{e}^{-6\,s}}{s\left( s + 6 \right) } \\
\left( s + 1 \right) Y\left( s \right) &= \frac{60\,\mathrm{e}^{-6\,s}}{s \left( s + 6 \right) } - 4 \\
Y\left( s \right) &= \frac{60\,\mathrm{e}^{-6\,s}}{s \left( s + 1 \right) \left( s + 6 \right) } - \frac{4}{s + 1} \end{align*} $

Evaluating $\displaystyle y\left( t \right) $ will require taking the Inverse Laplace Transform of this function.

The second term is easy as we can read the inverse transform from the table: $\displaystyle \mathcal{L}^{-1}\,\left\{ \frac{4}{s + 1} \right\} = 4\,\mathrm{e}^{-t} $.

For the first term, the exponential function factor suggests that we need to use the second shift theorem: $\displaystyle \mathcal{L}^{-1}\,\left\{ \mathrm{e}^{-a\,s}\,F\left( s \right) \right\} = f\left( t - a \right) H\left( t - a \right) $.

Here $\displaystyle F\left( s \right) = \frac{60}{s\left( s + 1 \right) \left( s + 6 \right) } $. To find $\displaystyle f\left( t \right) $ we will first need Partial Fractions.

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B}{s + 1} + \frac{C}{s + 6} &\equiv \frac{60}{s\left( s + 1 \right) \left( s + 6 \right) } \\
A\left( s + 1 \right) \left( s + 6 \right) + B\,s\left( s + 6 \right) + C\,s\left( s + 1 \right) &\equiv 60 \end{align*} $

Let $\displaystyle s = 0 \implies 6\,A = 60 \implies A = 10 $.

Let $\displaystyle s = -1 \implies -5\,B = 60 \implies B = -12$.

Let $\displaystyle s = -6 \implies 30\,C = 60 \implies C = 2 $. Thus

$\displaystyle \begin{align*} F\left( s \right) &= 10\left( \frac{1}{s} \right) - 12\left( \frac{1}{s + 1} \right) + 2\left( \frac{1}{s + 6} \right) \\ \\
f\left( t \right) &= 10 - 12\,\mathrm{e}^{-t} + 2\,\mathrm{e}^{-6} \\
\\
f\left( t - 6 \right) &= 10 - 12\,\mathrm{e}^{-\left( t - 6 \right) } + 2\,\mathrm{e}^{-6\,\left( t - 6 \right) } \\
\\
f\left( t - 6 \right) H\left( t - 6 \right) &= \left[ 10 - 12\,\mathrm{e}^{-\left( t - 6 \right) } + 2\,\mathrm{e}^{-6\,\left( t - 6 \right) } \right] H\left( t - 6 \right) \end{align*} $

So we can finally write down the solution to the DE:

$\displaystyle y\left( t \right) = \left[ 10 - 12\,\mathrm{e}^{-\left( t - 6 \right) } + 2\,\mathrm{e}^{-6\,\left( t - 6 \right) } \right] H\left( t - 6 \right) - 4\,\mathrm{e}^{-t} $
 

FAQ: Oscar's question via email about solving a DE using Laplace Transforms

What are Laplace Transforms?

Laplace Transforms are mathematical tools used to solve differential equations. They transform a function of time into a function of complex frequency, making it easier to solve differential equations using algebraic methods.

How do Laplace Transforms help in solving differential equations?

Laplace Transforms can convert a differential equation into an algebraic equation, which is easier to solve. This makes it a useful tool for solving complex differential equations that may be difficult to solve using traditional methods.

Can Laplace Transforms be used for any type of differential equation?

Yes, Laplace Transforms can be used for a wide range of differential equations, including linear, non-linear, and time-varying equations. However, they may not always be the most efficient method for solving every type of differential equation.

Are there any limitations to using Laplace Transforms for solving differential equations?

One limitation of using Laplace Transforms is that they can only be used for equations with constant coefficients. Additionally, the initial conditions of the differential equation must be known in order to use Laplace Transforms.

Are there any alternative methods for solving differential equations?

Yes, there are alternative methods for solving differential equations, such as the method of undetermined coefficients, variation of parameters, and power series solutions. The choice of method depends on the type of differential equation and the initial conditions given.

Similar threads

Replies
1
Views
9K
Replies
2
Views
10K
Replies
1
Views
10K
Replies
1
Views
10K
Replies
1
Views
10K
Replies
4
Views
10K
Replies
1
Views
10K
Replies
1
Views
10K
Replies
1
Views
9K
Back
Top