Oscillation with friction - Analytical mechanics

AI Thread Summary
The discussion revolves around analyzing a damped harmonic oscillator described by the equation m ddot{x} + alpha dot{x} = -kappa x, with a specific condition on the friction parameter. The proposed solution involves expressing the general solution as x(t) = e^(-alpha t / 2m)[A t + B], with constants A and B defined by initial conditions. Feedback suggests verifying the solution by substituting it back into the original equation, indicating that the provided solution may not correctly represent a damped oscillator due to the absence of oscillatory terms. The conversation highlights the critical damping case as a key aspect of the analysis. Overall, the thread emphasizes the importance of validating solutions in analytical mechanics.
NODARman
Messages
57
Reaction score
13
Homework Statement
.
Relevant Equations
.
Hi, I had those exercises and want to know if they're correct. Also, feedback/tips would be great from you, professionals.

$$A$$

1. Let's consider the oscillator with a friction parameter...

\begin{equation}
m \ddot{x}+\alpha \dot{x}=-\kappa x
\end{equation}
but with
\begin{equation}
\alpha^2=4 m \kappa
\end{equation}
and after inserting, show that the general solution will be like this:
\begin{equation}
x(t)=\mathrm{e}^{-\alpha t / 2 m}[\mathcal{A} t+\mathcal{B}]
\end{equation}
Express A and B constants with the initial coordinates and velocity and analyze.

My solution:\begin{aligned}
&m\ddot{x} + \dot{x}\sqrt{4mk} +kx=0\\
&x(t)=e^{-\frac{\alpha t}{2m}}[\mathcal {A}t+\mathcal{B}]\\
&\\
&\dot{x}(t)=-\frac{\alpha}{2m} e^{-\frac{\alpha t}{2m}} [\mathcal {A}t+\mathcal{B}]+e^{-\frac{\alpha t}{2m}}\mathcal{A}\\
&\ddot{x}(t)=-\frac{4\mathcal{A}\alpha m-\mathcal{A}{\alpha^{2}}t-\mathcal{B}{\alpha^{2}}}{4m^2}e^{-\frac{\alpha t}{2m}}\\
&\\
&x(0)=\mathcal{B}\equiv x_0 \\
&\dot{x}(0)=-\frac{\alpha}{2m} \mathcal{B}+\mathcal{A} = -\frac{\alpha}{2m} x_0 +\mathcal{A} \\
&\\
&\mathcal{A} = \dot{x}_0 + \frac{\alpha}{2m} x_0\\
&\\
&x(t)=e^{-\frac{\alpha t}{2m}}[\dot{x}_0 + \frac{\alpha}{2m} x_0 t+x_0] = e^{-\frac{\alpha t}{2m}}\left[\dot{x}_0 + \left(\frac{\alpha}{2m} t+1\right)x_0\right]\\
\end{aligned}
 
Last edited:
Physics news on Phys.org
NODARman said:
Homework Statement: .
Relevant Equations: .

##\dots## and want to know if they're correct.
How about substituting your solution back in the original equation? That's the first thing I would do to verify my solution. Needless to say this doesn't look right because you have a damped harmonic oscillator with no oscillatory term(s) in the equation.
 
kuruman said:
Needless to say this doesn't look right because you have a damped harmonic oscillator with no oscillatory term(s) in the equation.
It should turn out to be the critical damping case.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top