Oscillator Differentials: What's a physical meaning of complex part of the solution for coordinate change of the anharmonic oscillator?

AI Thread Summary
The discussion revolves around the complex part of the solution for coordinate changes in anharmonic oscillators, with participants seeking clarity on its physical meaning. One user expresses confusion about the original question and notes that the linked answer does not adequately address the complex solution or anharmonicity. Another user describes how mapping the state onto the complex plane results in a helical graph that tapers exponentially for unforced oscillators. There is a repeated request for a detailed explanation of the mathematical equations involved. The conversation highlights a need for clearer communication and understanding of the complex dynamics of oscillators.
DifferentialGalois
Messages
68
Reaction score
25
Homework Statement
What's a physical meaning of, for example, complex part of the solution for coordinate change of the anharmonic oscillator?
Why after substitute (for diff. equation solve) for real x we can earn ##x = Re(z) + iIm(z)##? Is it because of substitutio?
Relevant Equations
##x = Re(z) + iIm(z)##
##x(t)=e^{i\alpha t}##
##x(t) = A e^{i \alpha_1 t} + B e^{i \alpha_2 t}##
I don't understand what the question means, and the answer is provided here: https://physics.stackexchange.com/a/35821/222321
Could someone provide a comprehensive one-by-one explanation.
 
Physics news on Phys.org
The discussion at that link does not, as far as I can see, provide a physical meaning to the complex solution. Neither does it address anharmonicity, so I assume you mean just a standard damped (maybe forced) oscillator.
If we map the state onto the complex plane, the graph as a function of time (an axis normal to that plane) becomes a helix, tapering exponentially in the case of unforced. I would think this could be realised in a physical system.
 
bump
 
DifferentialGalois said:
bump
Why are you bumping your thread and not replying to @haruspex ?
 
berkeman said:
Why are you bumping your thread and not replying to @haruspex ?
i need an explanation to the mathematical equations.
 
DifferentialGalois said:
i need an explanation to the mathematical equations.
I thought I saw a pretty good explanation in the post by @haruspex -- Which part of what he wrote did you not understand?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top