- #1
atwood
- 9
- 0
I've seen the definition that an outer Lebesgue measure is defined as
[tex]m_n^* (A) = \inf \left\{ \sum_{k=1}^{\infty} l(I_k) \, \left| \, A \subset \bigcup_{k=1}^{\infty} I_k \right}[/tex]
where Ik are n-dimensional intervals and l(Ik) is the geometric length.
It is not actually clear to me if A has to be a proper subset. That is, does
[tex]A \subset \bigcup_{k=1}^{\infty} I_k[/tex]
actually mean
[tex]A \subseteq \bigcup_{k=1}^{\infty} I_k[/tex]
or
[tex]A \subsetneq \bigcup_{k=1}^{\infty} I_k[/tex]
?
[tex]m_n^* (A) = \inf \left\{ \sum_{k=1}^{\infty} l(I_k) \, \left| \, A \subset \bigcup_{k=1}^{\infty} I_k \right}[/tex]
where Ik are n-dimensional intervals and l(Ik) is the geometric length.
It is not actually clear to me if A has to be a proper subset. That is, does
[tex]A \subset \bigcup_{k=1}^{\infty} I_k[/tex]
actually mean
[tex]A \subseteq \bigcup_{k=1}^{\infty} I_k[/tex]
or
[tex]A \subsetneq \bigcup_{k=1}^{\infty} I_k[/tex]
?