- #1
- 3,486
- 1,165
As the title says, I am studying this topic for my control systems fundamentals course. I think I intuitively understand the meaning of the convolution integral that relates input, output and the impulse response, but I am failing to prove it graphically.
For example, the intuitive explanation for this convolution integral is as follows:
Any input can be represented by using time shifted and weighted impulses in succession, and the output at any time t is the superposition of individual impulse responses obtained from each impulse.
This makes sense, but when I try plot it on paper, something looks wrong.
For input x(t)=1...(x>=0) and impulse response h(t)=e-t, output y(t)= 1-e-t
Input:
Impulse reaponse:
Output:
Here, output y(0)=0, but impulse response h(0)=1. What makes y(0)=0 then?
Also, if I pick any instant t=a, the superposition of all the exponentially decaying impulse reaponses at t=a does not seem to give me the correct value of y(a). Where is my mistake? I feel I am missing something very fundamental here.
Thanks!
For example, the intuitive explanation for this convolution integral is as follows:
Any input can be represented by using time shifted and weighted impulses in succession, and the output at any time t is the superposition of individual impulse responses obtained from each impulse.
This makes sense, but when I try plot it on paper, something looks wrong.
For input x(t)=1...(x>=0) and impulse response h(t)=e-t, output y(t)= 1-e-t
Input:
Impulse reaponse:
Output:
Here, output y(0)=0, but impulse response h(0)=1. What makes y(0)=0 then?
Also, if I pick any instant t=a, the superposition of all the exponentially decaying impulse reaponses at t=a does not seem to give me the correct value of y(a). Where is my mistake? I feel I am missing something very fundamental here.
Thanks!