- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I have to find the Normal form of the 2.order partial differential equation. I am not sure if my solution is correct..
The differential equation is:
$ u_{xx}-4u_{xy}+4_{yy}-6u_x+12u_y-9u=0$
$a=1, b=-2, c=4$
$b^2-ac=4-4=0 \Rightarrow $ parabolic
$\frac{dy}{dx}=\frac{1}{a}(b \pm \sqrt{b^2-ac})$
$\frac{dy}{dx}=-2 \Rightarrow dy=-2dx \Rightarrow y=-2x+c \Rightarrow \xi=y+2x$
To find $ \eta$ ,we know that the determinant of the Jacobi-Matrix should be different from $0$ .
$J=\begin{vmatrix}
\xi_x & \xi_y\\
\eta_x & \eta_y
\end{vmatrix}=\xi_x \eta_y-\xi_y \eta_x \neq 0$
$ 2 \eta_y-n_x \neq 0$
So we could take $\eta=y$, couldn't we?
In this case it is $ 2 \neq 0$.
$\partial_x=2\partial_{\xi}$
$\partial_y=\partial_{\xi}+\partial_{\eta}$
$\partial_{xx}=4\partial_{\xi \xi}$
$\partial_{yy}=\partial_{\xi \xi}+2 \partial_{\xi \eta}+\partial_{\eta \eta}$
$\partial_{xy}=2\partial_{\xi \xi}+2 \partial_{\xi \eta}$
By replacing this in the differential equation we have:
$u_{\eta \eta}+3u_{\eta}-\frac{9}{4}u=0$
Could you tell me if my result is correct?
Shouldn't it be in the form $ u_{\xi \xi}=f(u,u_{\xi}, u_{\eta})$ ?
My result is in the form $ u_{\eta \eta}=f(u,u_{\xi}, u_{\eta})$.. (Thinking)
I have to find the Normal form of the 2.order partial differential equation. I am not sure if my solution is correct..
The differential equation is:
$ u_{xx}-4u_{xy}+4_{yy}-6u_x+12u_y-9u=0$
$a=1, b=-2, c=4$
$b^2-ac=4-4=0 \Rightarrow $ parabolic
$\frac{dy}{dx}=\frac{1}{a}(b \pm \sqrt{b^2-ac})$
$\frac{dy}{dx}=-2 \Rightarrow dy=-2dx \Rightarrow y=-2x+c \Rightarrow \xi=y+2x$
To find $ \eta$ ,we know that the determinant of the Jacobi-Matrix should be different from $0$ .
$J=\begin{vmatrix}
\xi_x & \xi_y\\
\eta_x & \eta_y
\end{vmatrix}=\xi_x \eta_y-\xi_y \eta_x \neq 0$
$ 2 \eta_y-n_x \neq 0$
So we could take $\eta=y$, couldn't we?
In this case it is $ 2 \neq 0$.
$\partial_x=2\partial_{\xi}$
$\partial_y=\partial_{\xi}+\partial_{\eta}$
$\partial_{xx}=4\partial_{\xi \xi}$
$\partial_{yy}=\partial_{\xi \xi}+2 \partial_{\xi \eta}+\partial_{\eta \eta}$
$\partial_{xy}=2\partial_{\xi \xi}+2 \partial_{\xi \eta}$
By replacing this in the differential equation we have:
$u_{\eta \eta}+3u_{\eta}-\frac{9}{4}u=0$
Could you tell me if my result is correct?
Shouldn't it be in the form $ u_{\xi \xi}=f(u,u_{\xi}, u_{\eta})$ ?
My result is in the form $ u_{\eta \eta}=f(u,u_{\xi}, u_{\eta})$.. (Thinking)