- #1
Portuga
- 56
- 6
- TL;DR Summary
- Consider the following vectors of ##\mathbb{V}^{3}##: ##u=\left(2,2,2\right)##
and ##v=\left(3,3,1\right)##. If ##w=\left(-5,1,-1\right)##, decompose
the vector ##v## into a component in ##W=\left[u,w\right]## and a component
in ##W^{\perp}##.
I first tried to use a method based on Gram Schmidt orthogonalization
method:
$$
v_{\parallel}=\left(v\ldotp\frac{u}{\left\Vert u\right\Vert }\right)\frac{u}{\left\Vert u\right\Vert }+\left(v\ldotp\frac{w}{\left\Vert w\right\Vert }\right)\frac{w}{\left\Vert w\right\Vert },
$$
and
$$
v_{\perp}=v-v_{\parallel}.
$$
Results were
$$
v_{\parallel}=\left(\frac{128}{27},\frac{50}{27},\frac{76}{27}\right)
$$
and
$$
v_{\perp}=\left(-\frac{47}{27},\frac{31}{27},-\frac{49}{27}\right).
$$
At first sight, things looked ok, because ##v_{\parallel}+v_{\perp}=v##,
but when I performed the scalar product between ##v_{\perp}## and ##u##
and ##w##, both resulted non null:
$$
v_{\perp}\ldotp u=-\frac{130}{27}
$$
and
$$
v_{\perp}\ldotp w=\frac{35}{3}.
$$
This was totally unespected to me because ##v_{\perp}## was designed
to be perpendicular to the subspace spanned by ##u## and ##w##, and
as so, these scalar products should result 0.
Then I tried a slight deviation from the previous method:
$$
v_{\parallel}=\left[v\ldotp\frac{\left(u+w\right)}{\left\Vert u+w\right\Vert }\right]\frac{\left(u+w\right)}{\left\Vert u+w\right\Vert }=\left(-\frac{3}{19},\frac{3}{19},\frac{1}{19}\right)
$$
and
$$
v_{\perp}=v-v_{\parallel}=\left(\frac{60}{19},\frac{54}{19},\frac{18}{19}\right).
$$
Again,
$$
v_{\perp}\ldotp u=\frac{264}{19}
$$
and
$$
v_{\perp}\ldotp w=-\frac{264}{19}.
$$
But, there was an advance:
$$
v_{\perp}\ldotp\left(u+w\right)=0.
$$
So, what am I doing wrong on all this? Am I missing something?
method:
$$
v_{\parallel}=\left(v\ldotp\frac{u}{\left\Vert u\right\Vert }\right)\frac{u}{\left\Vert u\right\Vert }+\left(v\ldotp\frac{w}{\left\Vert w\right\Vert }\right)\frac{w}{\left\Vert w\right\Vert },
$$
and
$$
v_{\perp}=v-v_{\parallel}.
$$
Results were
$$
v_{\parallel}=\left(\frac{128}{27},\frac{50}{27},\frac{76}{27}\right)
$$
and
$$
v_{\perp}=\left(-\frac{47}{27},\frac{31}{27},-\frac{49}{27}\right).
$$
At first sight, things looked ok, because ##v_{\parallel}+v_{\perp}=v##,
but when I performed the scalar product between ##v_{\perp}## and ##u##
and ##w##, both resulted non null:
$$
v_{\perp}\ldotp u=-\frac{130}{27}
$$
and
$$
v_{\perp}\ldotp w=\frac{35}{3}.
$$
This was totally unespected to me because ##v_{\perp}## was designed
to be perpendicular to the subspace spanned by ##u## and ##w##, and
as so, these scalar products should result 0.
Then I tried a slight deviation from the previous method:
$$
v_{\parallel}=\left[v\ldotp\frac{\left(u+w\right)}{\left\Vert u+w\right\Vert }\right]\frac{\left(u+w\right)}{\left\Vert u+w\right\Vert }=\left(-\frac{3}{19},\frac{3}{19},\frac{1}{19}\right)
$$
and
$$
v_{\perp}=v-v_{\parallel}=\left(\frac{60}{19},\frac{54}{19},\frac{18}{19}\right).
$$
Again,
$$
v_{\perp}\ldotp u=\frac{264}{19}
$$
and
$$
v_{\perp}\ldotp w=-\frac{264}{19}.
$$
But, there was an advance:
$$
v_{\perp}\ldotp\left(u+w\right)=0.
$$
So, what am I doing wrong on all this? Am I missing something?