- #1
BrandonBerchtold
- 46
- 6
- TL;DR Summary
- I have a couple questions regarding the exact nature of how energy is transferred from the parallel plate system to the particles passing through it.
Suppose there exists a pair of parallel plates with a voltage between them. These plates have a certain amount of energy stored in the electric field between them (E=1/2*C*V^2). Now we fire a fast (~5,000,000 m/s) beam of protons through the plates (parallel to the electric field) such that the protons are accelerated by the field.
Q1. How exactly is the stored energy of the parallel plates removed and transferred into the protons passing through the parallel plates? If you connect the plates with a conductor, I can see how the positive charges can be removed from the positive plate, be transferred along the conductor, and then get deposited in the negative plate, reducing the charge difference between the plates. How does this work when a proton is fired from just outside the positive plate, though the plate, through the field, and out through the negative plate? The proton never adheres to either plate, so how does the voltage between the plates change? Obviously the particle is extracting energy from the system, so the plate voltage must change some how, right? How does the voltage change if the plates are electrically isolated from one another?
Q2. Is there a limit to the quantity of protons that can be fired through the parallel plate system per unit time? If the particles are passing through at very very high speeds, the coulombs of charge passing through per second will be very high, even if the beam is just pulsed for a few microseconds. How will the parallel plates deal with the massive amount of current flowing through them? Capacitors generally come with an Equivalent Series Resistance, so wouldn't a parallel plate system also have such a resistance? If so, which part is responsible for this resistance and would therefore heat up due to resistive heating fron the current passing through the system?
Thanks :)
Q1. How exactly is the stored energy of the parallel plates removed and transferred into the protons passing through the parallel plates? If you connect the plates with a conductor, I can see how the positive charges can be removed from the positive plate, be transferred along the conductor, and then get deposited in the negative plate, reducing the charge difference between the plates. How does this work when a proton is fired from just outside the positive plate, though the plate, through the field, and out through the negative plate? The proton never adheres to either plate, so how does the voltage between the plates change? Obviously the particle is extracting energy from the system, so the plate voltage must change some how, right? How does the voltage change if the plates are electrically isolated from one another?
Q2. Is there a limit to the quantity of protons that can be fired through the parallel plate system per unit time? If the particles are passing through at very very high speeds, the coulombs of charge passing through per second will be very high, even if the beam is just pulsed for a few microseconds. How will the parallel plates deal with the massive amount of current flowing through them? Capacitors generally come with an Equivalent Series Resistance, so wouldn't a parallel plate system also have such a resistance? If so, which part is responsible for this resistance and would therefore heat up due to resistive heating fron the current passing through the system?
Thanks :)