- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Mmm)
I have to write a parity that is equivalent to the system:$$\left\{\begin{matrix}
x \equiv 1 \pmod 4\\
x \equiv 2 \pmod 3
\end{matrix}\right.$$
That's what I tried:
$4,3$ are coprime.
We want to find a $c$,such that $x \equiv c \pmod {4 \cdot 3}$
We set $M=4 \cdot 3=12, M_1=3,M_2=4$
$$3x \equiv 1 \pmod 4$$
$$x \equiv 3 \pmod 4$$
$$\xi_1=3$$
$$4x \equiv 2 \pmod 3$$
$$x \equiv 2 \pmod 3$$
$$\xi_2=2$$
We set $c=M_1 \cdot \xi_1+M_2 \cdot \xi_2=17$
The system gets:
$$x \equiv 12 \pmod {12} \Rightarrow x \equiv 5 \pmod {12} \Rightarrow x=12q+5, q \in \mathbb{Z} $$
Could you tell me if it is right? (Thinking)
I have to write a parity that is equivalent to the system:$$\left\{\begin{matrix}
x \equiv 1 \pmod 4\\
x \equiv 2 \pmod 3
\end{matrix}\right.$$
That's what I tried:
$4,3$ are coprime.
We want to find a $c$,such that $x \equiv c \pmod {4 \cdot 3}$
We set $M=4 \cdot 3=12, M_1=3,M_2=4$
$$3x \equiv 1 \pmod 4$$
$$x \equiv 3 \pmod 4$$
$$\xi_1=3$$
$$4x \equiv 2 \pmod 3$$
$$x \equiv 2 \pmod 3$$
$$\xi_2=2$$
We set $c=M_1 \cdot \xi_1+M_2 \cdot \xi_2=17$
The system gets:
$$x \equiv 12 \pmod {12} \Rightarrow x \equiv 5 \pmod {12} \Rightarrow x=12q+5, q \in \mathbb{Z} $$
Could you tell me if it is right? (Thinking)