- #1
Sparky_
- 227
- 5
Homework Statement
Find the charge on the capacitor in an L-R-C circuit at time t = 0.001
L = 0.05H, R = 2 ohms, C = 0.01F
q(0) = 5
i(0) = 0
E(t) = 0
Homework Equations
The Attempt at a Solution
[tex] L \frac {di(t)}{dt} + R \frac {dq(t)}{dt} + \frac {q}{C} = 0 [/tex]
[tex] \frac {dq^2(t)}{dt^2} + 40 \frac {dq(t)}{dt} + 2000q = 0 [/tex]
[tex] m^2 = 40m + 2000 = 0 [/tex]
[tex] q(t) = e^{-20t} (c1 * cos(40t) + c2 * sin(40t)) [/tex]
[tex] q'(t) = i(t) = -20e^{-20t} (c1 * cos(40t) + c2 * sin(40t) ) + e^{-20t}(-200 sin (40t) + 40*c2*cos(40t))[/tex]
Do you agree with my q(t) =
[tex] q(t) = e^{-20t} (5 cos(40t) + \frac{5} {2} sin(40t)) [/tex]
??
There is a second part to this problem -
Find the first time q is equal to 0.
Thanks to Kreizhn I have
[tex] 0 = e^{-20t} (5cos(40t) + \frac{5} {2}sin(40t)) [/tex]
[tex] 0 = (5cos(40t) + \frac{5} {2}sin(40t)) [/tex]
[tex] cos(40t) = -\frac{1} {2}sin(40t)) [/tex]
[tex] 40t = -1.1.07 [/tex]
[tex] t = -0.0276 [/tex]
[tex] 40t = -1.1.07 + pi [/tex]
[tex] t = 0.0508 [/tex]
The book gets t = 0.0669.
Suggestions?
Thanks
-Sparky_
Last edited: