- #1
Safinaz
- 260
- 8
- TL;DR Summary
- How to write partial derivatives in terms of Kronecker delta and the Laplacian operator?
How can the following term:
## T_{ij} = \partial_i \partial_j \phi ##
to be written in terms of Kronecker delta and the Laplacian operator ## \bigtriangleup = \nabla^2 ##?
I mean is there a relation like:
## T_{ij} = \partial_i \partial_j \phi = ?? \delta_{ij} \bigtriangleup \phi.##
But what are ?? term
Any help is appreciated!
## T_{ij} = \partial_i \partial_j \phi ##
to be written in terms of Kronecker delta and the Laplacian operator ## \bigtriangleup = \nabla^2 ##?
I mean is there a relation like:
## T_{ij} = \partial_i \partial_j \phi = ?? \delta_{ij} \bigtriangleup \phi.##
But what are ?? term
Any help is appreciated!
Last edited: