MHB Partial Derivatives: Find $\frac{\partial^2{w}}{\partial{u}\partial{v}}$

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $w=f(x, y)$ a two variable function and $x=u+v$, $y=u-v$.
Show that $$\frac{\partial^2{w}}{\partial{u}\partial{v}}=\frac{\partial^2{w}}{\partial{x^2}}-\frac{\partial^2{w}}{\partial{y^2}}$$

I have done the following:

We have $w(x(u,v), y(u, v))$.

From the chain rule we have: $$\frac{\partial{w}}{\partial{v}}=\frac{\partial{w}}{\partial{x}}\frac{\partial{x}}{\partial{v}}+\frac{\partial{w}}{\partial{y}}\frac{\partial{y}}{\partial{v}}=\frac{\partial{w}}{\partial{x}} \cdot 1+\frac{\partial{w}}{\partial{y}} \cdot (-1)=\frac{\partial{w}}{\partial{x}}-\frac{\partial{w}}{\partial{y}}$$

We apply again the chain rule, so:
$$\frac{\partial}{\partial{u}}\left (\frac{\partial{w}}{\partial{v}}\right )=\frac{\partial}{\partial{x}}\left (\frac{\partial{w}}{\partial{v}}\right ) \frac{\partial{x}}{\partial{u}}+\frac{\partial}{\partial{y}}\left (\frac{\partial{w}}{\partial{v}}\right )\frac{\partial{y}}{\partial{u}}=\frac{\partial}{\partial{x}}\left (\frac{\partial{w}}{\partial{x}}-\frac{\partial{w}}{\partial{y}}\right ) \cdot 1+\frac{\partial}{\partial{y}}\left (\frac{\partial{w}}{\partial{x}}-\frac{\partial{w}}{\partial{y}}\right ) \cdot 1\\ =\frac{\partial^2{w}}{\partial{x^2}}-\frac{\partial^2{w}}{\partial{x}\partial{y}}+\frac{\partial^2{w}}{\partial{x}\partial{y}}-\frac{\partial^2{w}}{\partial{y^2}}=\frac{\partial^2{w}}{\partial{x^2}}-\frac{\partial^2{w}}{\partial{y^2}}$$

Is it correct?? (Wondering)

Could I improve something at the formulation?? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Looks good to me. (Yes)
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...

Similar threads

Replies
6
Views
2K
Replies
3
Views
3K
Replies
5
Views
2K
Replies
3
Views
3K
Replies
3
Views
2K
Replies
2
Views
3K
Replies
4
Views
3K
Back
Top