- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! :)
From the relations:
$$\partial_{r}=\cos \theta \cdot \partial_{x}+ \sin \theta \cdot \partial_y$$
$$\partial_{\theta}=-r \sin \theta \cdot \partial_x+ r \cos \theta \cdot \partial_y$$
we get:
$$\partial_y=\sin \theta \cdot \partial{r}+\frac{\cos \theta}{r} \cdot \partial_{ \theta}$$
$$\partial_x=\cos \theta \cdot \partial{r}-\frac{\sin \theta}{r} \cdot \partial_{\theta}$$
Now,I want to calculate $ \partial_{xx}$.
That's what I have tried:
$$\partial_{xx}=\frac{\partial}{\partial{x}}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)=\frac{\partial}{\partial{x}}\left(\cos \theta\right)\partial_r+ \cos \theta \cdot \partial_x \partial_r-\frac{\partial}{\partial{x}}\left(\frac{\sin\left(\theta\right)}{r}\right) \partial_{\theta}-\frac{\sin \theta}{r} \cdot \frac{\partial}{\partial{x}}\left(\frac{\partial}{\partial_{\theta}}\right)= \\ \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \cos \theta \cdot \partial_r+\cos \theta \cdot \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)\partial_r-\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \left(\frac{\sin \theta}{r}\right) \cdot \partial_{\theta}-\frac{\sin \theta}{r}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \frac{\partial}{\partial_{\theta}}= \\ \cos^2 \theta \cdot \partial_{rr}-\frac{\sin \theta}{r} \cdot \left(- \sin \theta \cdot \partial_r + \cos \theta \cdot \partial_{r \theta}\right)+\cos \theta\left(\cos \theta \partial_{rr}-\frac{\sin \theta}{r} \cdot \partial_{\theta r}\right)- \cos \theta\left(-\frac{\sin \theta}{r^2} \partial_{\theta}+\frac{\sin \theta}{r} \cdot \partial_{r \theta}\right)+ \frac{\sin \theta}{r^2} \cdot \cos \theta \partial_{\theta}+ \frac{\sin^2 \theta}{r^2} \cdot \partial_{\theta \theta}-\frac{\sin \theta}{r} \cos \theta \cdot \partial_{r \theta}+\frac{\sin^2 \theta}{r^2} \partial_{\theta \theta }$$
$\displaystyle{\partial_{*}=\frac{\partial}{\partial{*}}}$
I collected the terms and simplified them and I got:
$$2 \cos^2 \theta \partial_{rr}+\frac{2 \sin^2\theta}{r^2} \partial_{\theta \theta}+\frac{\sin^2\theta}{r} \partial_r-\frac{4 \cos \theta \sin \theta}{r} \partial_{r \theta}+\frac{2 \sin \theta \cos \theta}{r^2} \partial_{\theta}$$But...in my notes the result is:
$$\cos^2 \theta \partial_{rr}+\frac{\sin^2 \theta}{r^2} \partial_{\theta \theta}+\frac{\sin^2 \theta}{r} \partial_r-\frac{2 \cos \theta \sin \theta}{r} \partial_{r \theta}+\frac{2 \sin \theta \cos \theta}{r^2} \partial_{\theta}$$
Have I done something wrong? (Thinking)
From the relations:
$$\partial_{r}=\cos \theta \cdot \partial_{x}+ \sin \theta \cdot \partial_y$$
$$\partial_{\theta}=-r \sin \theta \cdot \partial_x+ r \cos \theta \cdot \partial_y$$
we get:
$$\partial_y=\sin \theta \cdot \partial{r}+\frac{\cos \theta}{r} \cdot \partial_{ \theta}$$
$$\partial_x=\cos \theta \cdot \partial{r}-\frac{\sin \theta}{r} \cdot \partial_{\theta}$$
Now,I want to calculate $ \partial_{xx}$.
That's what I have tried:
$$\partial_{xx}=\frac{\partial}{\partial{x}}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)=\frac{\partial}{\partial{x}}\left(\cos \theta\right)\partial_r+ \cos \theta \cdot \partial_x \partial_r-\frac{\partial}{\partial{x}}\left(\frac{\sin\left(\theta\right)}{r}\right) \partial_{\theta}-\frac{\sin \theta}{r} \cdot \frac{\partial}{\partial{x}}\left(\frac{\partial}{\partial_{\theta}}\right)= \\ \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \cos \theta \cdot \partial_r+\cos \theta \cdot \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)\partial_r-\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \left(\frac{\sin \theta}{r}\right) \cdot \partial_{\theta}-\frac{\sin \theta}{r}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \frac{\partial}{\partial_{\theta}}= \\ \cos^2 \theta \cdot \partial_{rr}-\frac{\sin \theta}{r} \cdot \left(- \sin \theta \cdot \partial_r + \cos \theta \cdot \partial_{r \theta}\right)+\cos \theta\left(\cos \theta \partial_{rr}-\frac{\sin \theta}{r} \cdot \partial_{\theta r}\right)- \cos \theta\left(-\frac{\sin \theta}{r^2} \partial_{\theta}+\frac{\sin \theta}{r} \cdot \partial_{r \theta}\right)+ \frac{\sin \theta}{r^2} \cdot \cos \theta \partial_{\theta}+ \frac{\sin^2 \theta}{r^2} \cdot \partial_{\theta \theta}-\frac{\sin \theta}{r} \cos \theta \cdot \partial_{r \theta}+\frac{\sin^2 \theta}{r^2} \partial_{\theta \theta }$$
$\displaystyle{\partial_{*}=\frac{\partial}{\partial{*}}}$
I collected the terms and simplified them and I got:
$$2 \cos^2 \theta \partial_{rr}+\frac{2 \sin^2\theta}{r^2} \partial_{\theta \theta}+\frac{\sin^2\theta}{r} \partial_r-\frac{4 \cos \theta \sin \theta}{r} \partial_{r \theta}+\frac{2 \sin \theta \cos \theta}{r^2} \partial_{\theta}$$But...in my notes the result is:
$$\cos^2 \theta \partial_{rr}+\frac{\sin^2 \theta}{r^2} \partial_{\theta \theta}+\frac{\sin^2 \theta}{r} \partial_r-\frac{2 \cos \theta \sin \theta}{r} \partial_{r \theta}+\frac{2 \sin \theta \cos \theta}{r^2} \partial_{\theta}$$
Have I done something wrong? (Thinking)