Partial derivatives-polar coordinates

In summary, we can use the relations $\partial_{r}=\cos \theta \cdot \partial_{x}+ \sin \theta \cdot \partial_y$ and $\partial_{\theta}=-r \sin \theta \cdot \partial_x+ r \cos \theta \cdot \partial_y$ to calculate the partial derivatives $\partial_x$ and $\partial_y$ in terms of $\partial_r$ and $\partial_{\theta}$. Using these, we can then calculate $\partial_{xx}$ by taking the second derivative with respect to $x$ and simplifying the terms. However, it is important to distinguish between product and composition when replacing terms. In this case, replacing $\partial
  • #1
evinda
Gold Member
MHB
3,836
0
Hello! :)

From the relations:
$$\partial_{r}=\cos \theta \cdot \partial_{x}+ \sin \theta \cdot \partial_y$$
$$\partial_{\theta}=-r \sin \theta \cdot \partial_x+ r \cos \theta \cdot \partial_y$$
we get:

$$\partial_y=\sin \theta \cdot \partial{r}+\frac{\cos \theta}{r} \cdot \partial_{ \theta}$$
$$\partial_x=\cos \theta \cdot \partial{r}-\frac{\sin \theta}{r} \cdot \partial_{\theta}$$

Now,I want to calculate $ \partial_{xx}$.

That's what I have tried:

$$\partial_{xx}=\frac{\partial}{\partial{x}}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)=\frac{\partial}{\partial{x}}\left(\cos \theta\right)\partial_r+ \cos \theta \cdot \partial_x \partial_r-\frac{\partial}{\partial{x}}\left(\frac{\sin\left(\theta\right)}{r}\right) \partial_{\theta}-\frac{\sin \theta}{r} \cdot \frac{\partial}{\partial{x}}\left(\frac{\partial}{\partial_{\theta}}\right)= \\ \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \cos \theta \cdot \partial_r+\cos \theta \cdot \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)\partial_r-\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \left(\frac{\sin \theta}{r}\right) \cdot \partial_{\theta}-\frac{\sin \theta}{r}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \frac{\partial}{\partial_{\theta}}= \\ \cos^2 \theta \cdot \partial_{rr}-\frac{\sin \theta}{r} \cdot \left(- \sin \theta \cdot \partial_r + \cos \theta \cdot \partial_{r \theta}\right)+\cos \theta\left(\cos \theta \partial_{rr}-\frac{\sin \theta}{r} \cdot \partial_{\theta r}\right)- \cos \theta\left(-\frac{\sin \theta}{r^2} \partial_{\theta}+\frac{\sin \theta}{r} \cdot \partial_{r \theta}\right)+ \frac{\sin \theta}{r^2} \cdot \cos \theta \partial_{\theta}+ \frac{\sin^2 \theta}{r^2} \cdot \partial_{\theta \theta}-\frac{\sin \theta}{r} \cos \theta \cdot \partial_{r \theta}+\frac{\sin^2 \theta}{r^2} \partial_{\theta \theta }$$
$\displaystyle{\partial_{*}=\frac{\partial}{\partial{*}}}$

I collected the terms and simplified them and I got:
$$2 \cos^2 \theta \partial_{rr}+\frac{2 \sin^2\theta}{r^2} \partial_{\theta \theta}+\frac{\sin^2\theta}{r} \partial_r-\frac{4 \cos \theta \sin \theta}{r} \partial_{r \theta}+\frac{2 \sin \theta \cos \theta}{r^2} \partial_{\theta}$$But...in my notes the result is:
$$\cos^2 \theta \partial_{rr}+\frac{\sin^2 \theta}{r^2} \partial_{\theta \theta}+\frac{\sin^2 \theta}{r} \partial_r-\frac{2 \cos \theta \sin \theta}{r} \partial_{r \theta}+\frac{2 \sin \theta \cos \theta}{r^2} \partial_{\theta}$$

Have I done something wrong? :confused: (Thinking)
 
Physics news on Phys.org
  • #2
Hi! (Blush)

I'm trying to follow what you did.

How did you get from:
$$\frac{\partial}{\partial{x}}\left(\cos \theta\right)\partial_r+ \cos \theta \cdot \partial_x \partial_r-\frac{\partial}{\partial{x}}\left(\frac{\sin\left(\theta\right)}{r}\right) \partial_{\theta}-\frac{\sin \theta}{r} \cdot \frac{\partial}{\partial{x}}\left(\frac{\partial}{\partial_{\theta}}\right)$$
to this:
$$\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \cos \theta \cdot \partial_r+\cos \theta \cdot \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)\partial_r-\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \left(\frac{\sin \theta}{r}\right) \cdot \partial_{\theta}-\frac{\sin \theta}{r}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \frac{\partial}{\partial_{\theta}}$$
(Thinking)(Wondering)
 
  • #3
I like Serena said:
Hi! (Blush)

I'm trying to follow what you did.

How did you get from:
$$\frac{\partial}{\partial{x}}\left(\cos \theta\right)\partial_r+ \cos \theta \cdot \partial_x \partial_r-\frac{\partial}{\partial{x}}\left(\frac{\sin\left(\theta\right)}{r}\right) \partial_{\theta}-\frac{\sin \theta}{r} \cdot \frac{\partial}{\partial{x}}\left(\frac{\partial}{\partial_{\theta}}\right)$$
to this:
$$\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \cos \theta \cdot \partial_r+\cos \theta \cdot \left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right)\partial_r-\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \left(\frac{\sin \theta}{r}\right) \cdot \partial_{\theta}-\frac{\sin \theta}{r}\left(\cos \theta \cdot \partial_r-\frac{\sin \theta}{r} \cdot \partial_{\theta}\right) \cdot \frac{\partial}{\partial_{\theta}}$$
(Thinking)(Wondering)

I replaced $\displaystyle{\frac{\partial}{\partial_x}}$ with $\displaystyle{\partial_x=\cos \theta \cdot \partial{r}-\frac{\sin \theta}{r} \cdot \partial_{\theta}}$.
Shouldn't I have done it like that? (Thinking)(Thinking)(Thinking)
 
  • #4
evinda said:
I replaced $\displaystyle{\frac{\partial}{\partial_x}}$ with $\displaystyle{\partial_x=\cos \theta \cdot \partial{r}-\frac{\sin \theta}{r} \cdot \partial_{\theta}}$.
Shouldn't I have done it like that? (Thinking)(Thinking)(Thinking)

Aah! Now I see!
You're mixing up products with compositions.

Note that for instance:
$$\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2$$
is different from:
$$\frac \partial{\partial x} \circ \frac \partial{\partial x}=\frac {\partial^2}{\partial x^2}$$

When you write $\partial_x$ this is short hand notation.
At all times you need to be aware that it "multiplies on the left" and makes a "composition on the right".
 
  • #5
I like Serena said:
Aah! Now I see!
And no, you can't do it just like that.
You're mixing up products with compositions.

Note that for instance:
$$\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2$$
is different from:
$$\frac \partial{\partial x} \circ \frac \partial{\partial x}=\frac {\partial^2}{\partial x^2}$$

When you write $\partial_x$ this is short hand notation.
At all times you need to be aware that it "multiplies on the left" and makes a "composition on the right".

In our case, I can't just find the product: $\displaystyle{\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2}$ ,because $\displaystyle{\frac{\partial}{\partial_x}}$ is not linear,right? :confused:
 
  • #6
evinda said:
In our case, I can't just find the product: $\displaystyle{\frac \partial{\partial x} \cdot \frac \partial{\partial x}=\left(\frac \partial{\partial x}\right)^2}$ ,because $\displaystyle{\frac{\partial}{\partial_x}}$ is not linear,right? :confused:

Umm... not quite sure what you're saying here... (Wondering)
It's true enough that $\displaystyle{\frac{\partial}{\partial x}}$ is not linear, but we do have that:

$$\left(\frac \partial{\partial x} \cdot \frac \partial{\partial x}\right)\Big(f(x)\Big)
=\left(\frac \partial{\partial x}\Big(f(x)\Big)\right)^2
=\left(\frac \partial{\partial x}\right)^2\Big(f(x)\Big)$$
Actually, you can replace it like you did, but you have to be very careful to distinguish product from composition.

So for instance:
\begin{aligned}\partial_x(\cos \theta)\partial_r
&= \Big(\partial_x \circ (\cos \theta)\Big) \cdot \partial_r \\
&= \Big(\cos \theta \cdot \partial_r - \frac{\sin \theta}{r} \cdot \partial_\theta\Big) \circ (\cos \theta) \cdot \partial_r \\
&= \Big(\cos \theta \cdot \partial_r(\cos \theta) - \frac{\sin \theta}{r} \cdot \partial_\theta(\cos \theta)\Big)\cdot \partial_r \\
&= \Big(\cos \theta \cdot 0 - \frac{\sin \theta}{r} \cdot -\sin \theta\Big)\cdot \partial_r \\
&=\frac{\sin^2 \theta}{r}\cdot \partial_r
\end{aligned}
(Wasntme)
 

FAQ: Partial derivatives-polar coordinates

1. What are partial derivatives in polar coordinates?

Partial derivatives in polar coordinates refer to the rate of change of a function with respect to one variable while holding all other variables constant. In polar coordinates, the two variables are typically represented as radius (r) and angle (θ).

2. How do you calculate partial derivatives in polar coordinates?

To calculate a partial derivative in polar coordinates, you use the chain rule and substitute in the appropriate expressions for r and θ. For example, to find ∂f/∂r, you would substitute x = rcosθ and y = rsinθ into the formula for ∂f/∂x.

3. What is the relationship between partial derivatives and polar coordinates?

In polar coordinates, the partial derivatives ∂f/∂r and ∂f/∂θ represent the rate of change of a function with respect to the radius and angle, respectively. This allows us to analyze how a function changes as we move along a curve in the polar coordinate system.

4. What is the significance of partial derivatives in polar coordinates?

Partial derivatives in polar coordinates are important in fields such as physics and engineering, where many problems are naturally represented in polar coordinates. They allow us to analyze the behavior of a function in terms of its components (radius and angle) and make predictions about how it will change in different directions.

5. Can you give an example of how partial derivatives are used in polar coordinates?

One example of using partial derivatives in polar coordinates is in finding the maximum or minimum values of a function. By finding the partial derivatives and setting them equal to 0, we can solve for the values of r and θ at which the function reaches a maximum or minimum. This can be particularly useful in optimization problems in physics or engineering.

Similar threads

Back
Top