Partial Differential Equation: Is There an Easy Way to Solve This?

In summary, the conversation discusses a partial differential equation that needs to be solved. The person suggests finding an equivalent differential for the right-hand side of the equation to make it simpler and then integrating to solve it. They also mention trying to merge both differentials on the right side into one, but were unable to find a way to do so. The conversation ends with someone pointing out a mistake in the third line of the solution.
  • #1
Telemachus
835
30
I have this partial differential equation that I have to solve, and I thought that perhaps there was an easy way of solving this, like finding an equivalent differential for the right hand side of the equation, on such a way that I could get a simple differential equation, and then just integrating I could solve this.

The partial differential equation that I have to solve is this:
$$d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})$$
Is there an easy way for solving this? the idea I had was to merge both differentials on the right side in only one differential, but I couldn't find the way.

I'm sorry, I wanted to post this in differential equations, I made a mistake posting this here.

---------- Post added at 08:36 PM ---------- Previous post was at 06:52 PM ----------

Ok. I think I got it. This is what I have done:
$$d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})$$

So I took
$$d(A^{-1/2}u^{-3/4}v^{1/2})=A^{-1/2}(-\frac{3}{4}u^{-7/4}v^{1/2}du+\frac{1}{2}u^{-3/4}v^{-1/2}dv)$$
And in the other hand:
$$d(2A^{-1/2}u^{1/4}v^{-1/2})=A^{-1/2}(\frac{1}{2}u^{-7/4}v^{1/2}du+u^{1/4}v^{-3/2}dv)$$

Then
$$d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})=A^{-1/2}(-\frac{3}{4}u^{-7/4}v^{1/2}du+\frac{1}{2}u^{-3/4}v^{-1/2}dv+\frac{1}{2}u^{-7/4}v^{1/2}du+u^{1/4}v^{-3/2}dv)$$
$$d \left( \frac{\mu}{T} \right )=A^{-1/2}[ -\frac{1}{4}u^{-3/4}v^{1/2}du-\frac{1}{2}u^{1/4}v^{-1/2}dv]=-\frac{1}{4}[u^{-3/4}v^{1/2}du+2u^{1/4}v^{-1/2}dv]=-A^{-1/2}d(u^{1/4}v^{1/2})$$

PD: Thanks for moving it :)
 
Last edited:
Physics news on Phys.org
  • #2
Ulysses said:
I have this partial differential equation that I have to solve, and I thought that perhaps there was an easy way of solving this, like finding an equivalent differential for the right hand side of the equation, on such a way that I could get a simple differential equation, and then just integrating I could solve this.

The partial differential equation that I have to solve is this:
$$d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})$$
Is there an easy way for solving this? the idea I had was to merge both differentials on the right side in only one differential, but I couldn't find the way.

I'm sorry, I wanted to post this in differential equations, I made a mistake posting this here.

---------- Post added at 08:36 PM ---------- Previous post was at 06:52 PM ----------

Ok. I think I got it. This is what I have done:
$$d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})$$

So I took
$$d(A^{-1/2}u^{-3/4}v^{1/2})=A^{-1/2}(-\frac{3}{4}u^{-7/4}v^{1/2}du+\frac{1}{2}u^{-3/4}v^{-1/2}dv)$$
And in the other hand:
$$d(2A^{-1/2}u^{1/4}v^{-1/2})=A^{-1/2}(\frac{1}{2}u^{-7/4}v^{1/2}du+u^{1/4}v^{-3/2}dv)$$

Then
$$d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})=A^{-1/2}(-\frac{3}{4}u^{-7/4}v^{1/2}du+\frac{1}{2}u^{-3/4}v^{-1/2}dv+\frac{1}{2}u^{-7/4}v^{1/2}du+u^{1/4}v^{-3/2}dv)$$
$$d \left( \frac{\mu}{T} \right )=A^{-1/2}[ -\frac{1}{4}u^{-3/4}v^{1/2}du-\frac{1}{2}u^{1/4}v^{-1/2}dv]=-\frac{1}{4}[u^{-3/4}v^{1/2}du+2u^{1/4}v^{-1/2}dv]=-A^{-1/2}d(u^{1/4}v^{1/2})$$

PD: Thanks for moving it :)

Hi Ulysses, :)

I think you have a mistake in the third line. It should be,

\[d(2A^{-1/2}u^{1/4}v^{-1/2})=A^{-1/2}\left(\frac{1}{2}u^{-3/4}v^{-1/2}du-u^{1/4}v^{-3/2}dv\right)\]

Kind Regards,
Sudharaka.
 

FAQ: Partial Differential Equation: Is There an Easy Way to Solve This?

What is a partial differential equation?

A partial differential equation (PDE) is a mathematical equation that involves partial derivatives of a multivariable function. These equations are used to describe and model various physical phenomena, such as heat flow, fluid dynamics, and quantum mechanics.

What is the difference between a partial differential equation and an ordinary differential equation?

The main difference between a PDE and an ordinary differential equation (ODE) is that a PDE involves partial derivatives with respect to multiple independent variables, while an ODE only involves derivatives with respect to a single independent variable. This makes PDEs more complex and challenging to solve.

What are some real-life applications of partial differential equations?

PDEs have a wide range of applications in science, engineering, and economics. They are commonly used to model and solve problems in fields such as heat transfer, electromagnetism, fluid mechanics, quantum mechanics, and population dynamics.

What are the different types of partial differential equations?

There are several types of PDEs, including elliptic, parabolic, and hyperbolic equations. Elliptic PDEs are used to describe steady-state problems, parabolic PDEs are used to model time-dependent phenomena, and hyperbolic PDEs are used to describe wave-like behavior.

What are some common methods for solving partial differential equations?

There are various methods for solving PDEs, including separation of variables, Fourier series, finite difference methods, finite element methods, and numerical methods such as the method of characteristics. Which method is used depends on the type and complexity of the PDE, as well as the specific problem being studied.

Similar threads

Replies
2
Views
2K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
7
Views
2K
Replies
3
Views
2K
Replies
5
Views
2K
Back
Top