- #1
arrow27
- 7
- 0
Find surface of
$\begin{array}{l}
\text{Problem Cauchy} \\
{a^2} \cdot {x_2} \cdot u \cdot {u_{{x_1}}} + {b^2} \cdot {x_1} \cdot u \cdot {u_{{x_2}}} = 2{c^2}{x_1}{x_2}{\rm{ }} \\
\end{array}$
The partial differntial equation passes through
${\rm{ C: = \{ }}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,{x_3} = u({x_1},{x_2}) = 0\} \\
\\ $$a,b,c$ nonzero constants
$\begin{array}{l}
\text{Problem Cauchy} \\
{a^2} \cdot {x_2} \cdot u \cdot {u_{{x_1}}} + {b^2} \cdot {x_1} \cdot u \cdot {u_{{x_2}}} = 2{c^2}{x_1}{x_2}{\rm{ }} \\
\end{array}$
The partial differntial equation passes through
${\rm{ C: = \{ }}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,{x_3} = u({x_1},{x_2}) = 0\} \\
\\ $$a,b,c$ nonzero constants
Last edited: