MHB Partial Fraction Decomposition Help - Calculus BC

AI Thread Summary
The discussion focuses on solving the integral of the function (4x^2+x-2)/(x^3+2x^2-3x) using partial fraction decomposition. The denominator is factored as x(x-1)(x+3), leading to the assumption of a decomposition form with constants A, B, and C. The Heaviside cover-up method is employed to find the values of A, B, and C, resulting in A = 31/12, B = 2/3, and C = 3/4. The final decomposition is expressed as (31/12)/(x+3) + (2/3)/x + (3/4)/(x-1), allowing for straightforward integration. The integral evaluates to a logarithmic expression involving the decomposed terms.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Help with Calculus BC: partial fractions!?

Thank you for your help guys. I wrote the problem wrong in the previous question :(

integral (4x^2+x-2)/(x^3+2x^2-3x) dx

howwwww?

Here is a link to the question:

Help with Calculus BC: partial fractions!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello living higher:

We are given to decompose:

$\displaystyle \frac{4x^2+x-2}{x^3+2x^2-3x}$

The first step is to factorize the denominator:

$x^3+2x^2-3x=x(x^2+2x-3)=x(x-1)(x+3)$

Now we assume the decomposition will take the form:

$\displaystyle \frac{4x^2+x-2}{x(x-1)(x+3)}=\frac{A}{x+3}+\frac{B}{x}+\frac{C}{x-1}$

Now, rather than set up a linear system of equations, I am going to use a shortcut method called the Heaviside cover-up method. Look at the first term on the right. The root of the denominator is $x=-3$.

To find the value of $A$, we "cover-up" the factor $x+3$ to get:

$\displaystyle \frac{4x^2+x-2}{x(x-1)}$

and we evaluate this at $x=-3$ to find:

$\displaystyle A=\frac{4(-3)^2+(-3)-2}{(-3)((-3)-1)}=\frac{31}{12}$

Next we look at the second term in the decomposition and we see the root of the denominator is $x=0$, and covering up the factor $x$ on the left, and evaluating it for $x=0$, we find:

$\displaystyle B=\frac{4(0)^2+(0)-2}{((0)-1)((0)+3)}=\frac{2}{3}$

And finally, we look at the third term in the decomposition and we see the root of the denominator is $x=1$, and covering the the factor $x-1$ on the left and evaluation it for $x=1$, we find:

$\displaystyle C=\frac{4(1)^2+(1)-2}{(1)((1)+3)}=\frac{3}{4}$

And now we may state:

$\displaystyle \frac{4x^2+x-2}{x^3+2x^2-3x}=\frac{31}{12(x+3)}+\frac{2}{3x}+\frac{3}{4(x-1)}$

Now we may directly integrate:

$\displaystyle \int\frac{31}{12(x+3)}+\frac{2}{3x}+\frac{3}{4(x-1)}\,dx=\frac{31}{12}\ln|x+3|+\frac{2}{3}\ln|x|+ \frac{3}{4}\ln|x-1|+C$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top