- #36
gabbagabbahey
Homework Helper
Gold Member
- 5,000
- 7
Nyasha said:For H l got [tex]\frac{-1}{4}[/tex] but for some reason l can't find G=0
[tex]x^2=A(1+x)(1-x)^2(1+x^2)^2+B(1-x)^2(1+x^2)^2+C(1-x)(1+x^2)^2(1+x)^2+D(1+x^2)^2(1+x)^2[/tex]
[tex]+(Ex+F)(1+x)^2 (1+x^2)(1-x)^2+(Gx+H) (1-x)^2(1+x)^2[/tex]
[tex]x^2=A(x^7-x^6+x^5-x^4-x^3+x^2-x+1)+B(x^6-x^5+3x^4-4x^3+3x^2-2x+1)+[/tex][tex]C(-x^7-x^6-x^5-x^4+x^3+x^2+x+1)+ D(x^6+2x^5+3x^4+4x^3+3x^2+2x+1)[/tex][tex]+(Ex+F)(x^8-3x^4+x^2+1)+(Gx+H)(x^4-2x^2+1)[/tex]
[tex]x^5\rightarrow 0=A-B-C+2D-3E+G \rightarrow 0=\frac{1}{16}-\frac{1}{16}-\frac{1}{16}+\frac{1}{8}+G[/tex]
[tex]\therefore G=\frac{-1}{16}[/tex]
Check your expansion of the [tex]B(1-x)^2(1+x^2)^2[/tex] term