- #1
mathlearn
- 331
- 0
Trouble here in the below partial fraction (Bug)
$\frac{5x^2+1}{(3x+2)(x^2+3)}$
One factor in the denominator is a quadratic expression
Split this into two parts A&B
$\frac{5x^2+1}{(3x+2)(x^2+3)}=\frac{A}{(3x+2)}+\frac{Bx+c}{(x^2+3)}$
$\frac{5x^2+1}{(3x+2)(x^2+3)}=\frac{A(x^2+3)}{(3x+2)}+\frac{Bx+c (3x+2)}{(x^2+3)}$
${5x^2+1}={A(x^2+3)}+{Bx+c (3x+2)}{}$
and cannot take it from here
$\frac{5x^2+1}{(3x+2)(x^2+3)}$
One factor in the denominator is a quadratic expression
Split this into two parts A&B
$\frac{5x^2+1}{(3x+2)(x^2+3)}=\frac{A}{(3x+2)}+\frac{Bx+c}{(x^2+3)}$
$\frac{5x^2+1}{(3x+2)(x^2+3)}=\frac{A(x^2+3)}{(3x+2)}+\frac{Bx+c (3x+2)}{(x^2+3)}$
${5x^2+1}={A(x^2+3)}+{Bx+c (3x+2)}{}$
and cannot take it from here