- #1
emmaerin
- 11
- 0
Homework Statement
Evaluate the integral. (Remember to use ln |u| where appropriate. Use C for the constant of integration.)
[itex] \int \frac {5x^2 - 20x +45}{(2x+1)(x-2)^2}\, dx [/itex]
Homework Equations
[itex] 5x^2 - 20x +45 [/itex] = [itex] 5 (x^2 -4x +9) [/itex]
The Attempt at a Solution
I'm able to come up with an answer, but it's not correct. I'd really appreciate it if someone could tell me where I'm going wrong. Thanks! (Also this is my first attempt at LaTeX, so forgive me if it's not formatted properly!)
First to solve for the partial fractions:
[itex] \frac {A}{2x+1} + \frac {B}{x-2} + \frac {C}{(x-2)^2} [/itex]
[itex] x^2 - 4x +9 = A (x-2)^2 + B (2x+1) (x-2) + C (2x+1) [/itex]
[itex] x^2 - 4x + 9 = A (x^2 - 4x + 4) + B (2x^2 - 3x - 2) + C (2x+1) [/itex]
[itex] x^2 = x^2 (A+2B) [/itex]
[itex] -4x = x (-4A - 3B + 2C) [/itex]
[itex] 9 = 4A -2B +C [/itex]
Therefore,
[itex] C = 9-4A +2B [/itex]
[itex] -4x = x ( -4A - 3B + 2(9-4A+2B))[/itex]
[itex] -4 = -12A + B +18 [/itex]
[itex] -22 = -12A + B [/itex]
and
[itex] 1 = A + 2B [/itex]
[itex] -22 = -22A - 44B [/itex]
Gives me,
[itex] -12A + B = -22A - 44B [/itex]
[itex] A = \frac {-9}{2} B [/itex]
[itex] 1 = \frac {-9}{2}B + 2B [/itex]
*[itex] \mathbf B = \frac{-2}{5} [/itex]
[itex] 1 = A + 2B [/itex]
*[itex] \mathbf A = \frac{9}{5} [/itex]
[itex] C = 9 - 4A + 2B [/itex]
*[itex] \mathbf C = 1 [/itex]
Substituting in A, B, and C gives me:
[itex] \int \frac {\frac{9}{5}}{2x+1}\,dx [/itex] + [itex] \int \frac {\frac{-2}{5}}{x-2} \,dx [/itex] + [itex] \int \frac {1}{(x-2)^2}\,dx [/itex]
[itex] = \frac{9}{5} \int \frac {1}{2x+1}\,dx [/itex] [itex] - \frac{2}{5} \int \frac {1}{x-2}\,dx [/itex] [itex] + \int \frac {1}{(x-2)^2} \, dx [/itex]For the first integral, [itex] = \frac{9}{5} \int \frac {1}{2x+1}\,dx [/itex]
[itex] u = 2x+1, du = 2 dx [/itex]
[itex] \frac {9}{10} \int \frac {1}{u}\, du [/itex]
[itex] = \frac {9}{10} ln |2x+1|[/itex]For the second integral, [itex] \int \frac {\frac{-2}{5}}{x-2} \,dx [/itex]
[itex] \frac{-2}{5} \int \frac {1}{x-2} \, dx [/itex]
[itex] = \frac{-2}{5} ln |x-2| [/itex] For the third integral, [itex] \int \frac {1}{(x-2)^2} \, dx [/itex]
[itex] \int (x-2)^{-2} \, dx [/itex]
[itex] = \frac {-1}{x-2} [/itex]This gives me the following answer, but it's wrong :( I know this is a long problem, so any help would be appreciated!
[itex] \frac {9}{10} ln |2x+1|[/itex] + [itex] \frac{-2}{5} ln |x-2| [/itex] + [itex] \frac {-1}{x-2} [/itex] +C